Complementary series representation

Complementary series representation

In mathematics, complementary series representations of a reductive real or p-adic Lie groups are certain irreducible unitary representations that are not tempered and do not appear in the decomposition of the regular representation into irreducible representations.

They are rather mysterious: they do not turn up very often, and seem to exist by accident. They were sometimes overlooked, in fact, in some earlier claims to have classified the irreducible unitary representations of certain groups.

Several conjectures in mathematics, such as the Selberg conjecture, are equivalent to saying that certain representations are not complementary. For examples see the representation theory of SL2(R). Elias M. Stein (1972) constructed some families of them for higher rank groups using analytic continuation, sometimes called the Stein complementary series.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Representation theory of SL2(R) — In mathematics, the main results concerning irreducible unitary representations of the Lie group SL2(R) are due to Gelfand and Naimark (1946), V. Bargmann (1947), and Harish Chandra (1952). Structure of the complexified Lie algebra We choose a… …   Wikipedia

  • Tempered representation — In mathematics, a tempered representation of a linear semisimple Lie group is a representation that has a basis whose matrix coefficients lie in the L p space : L 2+ epsilon;( G ) for any epsilon; gt; 0. FormulationThis condition, as just given,… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Elias M. Stein — Infobox Scientist name = Elias M. Stein birth date = Birth date and age|1931|1|13 birth place = Belgium residence = nationality = USA field = Mathematics work institution = Princeton University alma mater = University of Chicago doctoral advisor …   Wikipedia

  • Polylogarithm — Not to be confused with polylogarithmic. In mathematics, the polylogarithm (also known as Jonquière s function) is a special function Lis(z) that is defined by the infinite sum, or power series: It is in general not an elementary function, unlike …   Wikipedia

  • L-function — The theory of L functions has become a very substantial, and still largely conjectural, part of contemporary number theory. In it, broad generalisations of the Riemann zeta function and the L series for a Dirichlet character are constructed, and… …   Wikipedia

  • Cusp form — In number theory, a branch of mathematics, a cusp form is a particular kind of modular form, distinguished in the case of modular forms for the modular group by the vanishing in the Fourier series expansion (see q expansion) Σanqn of the constant …   Wikipedia

  • Trigonometric functions — Cosine redirects here. For the similarity measure, see Cosine similarity. Trigonometry History Usage Functions Generalized Inverse functions …   Wikipedia

  • Holomorphic functional calculus — In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function fnof; of a complex argument z and an operator T , the aim is to construct an operator:f(T),which in a… …   Wikipedia

  • Incomplete gamma function — In mathematics, the gamma function is defined by a definite integral. The incomplete gamma function is defined as an integral function of the same integrand. There are two varieties of the incomplete gamma function: the upper incomplete gamma… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”