- Hypertranscendental function
A hypertranscendental function is a function which is not the solution of an algebraic
differential equation with coefficients in Z (theinteger s) and with algebraicinitial condition s.The term was introduced by Mordukhai-Boltovski in "Hypertranscendental numbers and hypertranscendental functions" (1949).
Hypertranscendental functions usually arise as the solutions to
functional equation s, for example theGamma function .Examples
Known hypertranscendental functions
* The zeta functions of
algebraic number field s, in particular, theRiemann zeta function
* TheGamma function Functions which are not hypertranscendental
* Any
polynomial with algebraic coefficients
* Theexponential function and thelogarithm
* The sine, cosine and tangenttrigonometric function see also
*
Hypertranscendental number References
* Loxton,J.H., Poorten,A.J. van der, " [http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN356261603_0016 A class of hypertranscendental functions] ", Aequationes Mathematicae, Periodical volume 16
* Mahler,K., "Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen", Math. Z. 32 (1930) 545-585.
Wikimedia Foundation. 2010.