Minimal volume

Minimal volume

In mathematics, in particular in differential geometry, the minimal volume is a number that describes one aspect of a Riemannian manifold's topology. This invariant was introduced by Mikhail Gromov.

Contents

Definition

Consider a closed orientable connected smooth manifold Mn with a smooth Riemannian metric g, and define Vol(M,g) to be the volume of a manifold M with the metric g. Let Kg represent the sectional curvature.

The minimal volume of M is a smooth invariant defined as

MinVol(M):=\inf_{g}\{Vol(M,g) : |K_{g}|\leq 1\}

that is, the infimum of the volume of M over all metrics with bounded sectional curvature.

Clearly, any manifold M may be given an arbitrarily small volume by selecting a Riemannian metric g and scaling it down to λg, as Vol(Mg) = λn / 2Vol(M,g). For a meaningful definition of minimal volume, it is thus necessary to prevent such scaling. The inclusion of bounds on sectional curvature suffices, as \textstyle K_{\lambda g} = \frac{1}{\lambda} K_g. If MinVol(M) = 0, then Mn can be "collapsed" to a manifold of lower dimension (and thus one with n-dimensional volume zero) by a series of appropriate metrics; this manifold may be considered the Hausdorff limit of the related sequence, and the bounds on sectional curvature ensure that this convergence takes place in a topologically meaningful fashion.

Related topological invariants

The minimal volume invariant is connected to other topological invariants in a fundamental way; via Chern-Weil theory, there are many topological invariants which can be described by integrating polynomials in the curvature over M. In particular, the Chern classes and Pontryagin classes are bounded above by the minimal volume.

Properties

Gromov has conjectured that every closed simply connected odd-dimensional manifold has zero minimal volume. This conjecture clearly does not hold for even-dimensional manifolds.

References

  • Gromov, M. Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser (1999) ISBN 0-8176-3898-9.
  • Gromov, M. Volume and bounded cohomology, Publ. Math. IHES 56 (1982) 1—99.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Minimal Wave — is a contentiously named[1] genre of electronic music which focuses on electronic, pre MIDI (1982, but not pre sequencer) instrumentation and themes of sincere, rather than ironic, detachment.[1] It comprises obscure, atypical examples of genres… …   Wikipedia

  • volume — [ vɔlym ] n. m. • XIIIe; lat. volumen « feuilles manuscrites enroulées », rad. volvere « rouler » I ♦ 1 ♦ (1270) Réunion d un certain nombre de cahiers (notamment imprimés) brochés ou reliés ensemble. ⇒ 1. livre. La bibliothèque royale « s… …   Encyclopédie Universelle

  • MINIMAL (ART) — Comme de nombreux courants de l’art moderne et contemporain, le minimal art , né aux États unis dans les années 1964 1965, a souffert d’une appellation commode mais inexacte et déformatrice, tant du point de vue général, qui regroupait certaines… …   Encyclopédie Universelle

  • minimal — minimal, ale (entrée créée par le supplément) (mi ni mal, ma l ) adj. Qui appartient à un minimum. Volume minimal. Calibres minimaux. ÉTYMOLOGIE    Cet adjectif, ainsi que maximal (appartenant à un maximum), sont dus au docteur Foret, de Lausanne …   Dictionnaire de la Langue Française d'Émile Littré

  • Minimal surface — For minimal surfaces in algebraic geometry see Minimal model (birational geometry). Verrill Minimal Surface …   Wikipedia

  • Minimal umgebendes Rechteck — Ein dreidimensionaler Körper und ein ihn minimal umgebendes Rechteck (in weiß; rotiert) Das minimal umgebende Rechteck (MUR) (Englisch: minimal bounding rectangle, MBR, auch bounding box und envelope) bezeichnet das kleinstmögliche… …   Deutsch Wikipedia

  • Pump Up the Volume (song) — Infobox Single Name = Pump Up the Volume Artist = MARRS B side = Anitina (The First Time I See She Dance) Released = August 3, 1987 Format …   Wikipedia

  • Bounding Volume — Ein dreidimensionaler Körper und die entsprechende Bounding Box (in weiß) Ein Bounding Volume ist in der algorithmischen Geometrie ein einfacher geometrischer Körper, der ein komplexes dreidimensionales Objekt oder einen komplexen Körper… …   Deutsch Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Weeks manifold — In mathematics, the Weeks manifold, sometimes called the Fomenko Matveev Weeks manifold, is a closed hyperbolic 3 manifold obtained by (5,2) and (5,1) Dehn surgeries on the Whitehead link. It has volume approximately equal to .9427... and has the …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”