Viviani's theorem

Viviani's theorem

Viviani's theorem is the theorem named after Vincenzo Viviani stating that the sum of the distances from a point to the sides of an equilateral triangle equals the length of its altitude.

The theorem can be extended to equilateral polygons and equiangular polygons. :"The sum of distances from a point to the side lines of an equiangular polygon does not depend on the point and is that polygon's invariant."

Proof

This theorem can be easily proven by comparing areas of triangles. Let ABC be a equilateral triangle and P its interior point. Let "s" denote length of its side, "h" altitude and "l", "m", "n" distances of point P from sides. Then

:S(ABC) = S(ABP) + S(ACP) + S(BCP),

:frac{s h}{2} = frac{s l}{2} + frac{s m}{2} + frac{s n}{2},

:h = l + m + n

and that is what we wanted.

External links

* [http://www.cut-the-knot.org/Curriculum/Geometry/Viviani.shtml Viviani's Theorem: What is it?] at Cut the knot.
* [http://demonstrations.wolfram.com/VivianisTheorem/ Viviani's Theorem] by Jay Warendorff, The Wolfram Demonstrations Project.
*


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Vincenzo Viviani — Infobox Scientist name = Vincenzo Viviani box width = image width =150px caption = Vincenzo Viviani birth date = April 5, 1622 birth place =Florence death date = September 22, 1703 death place = residence = citizenship = nationality = Italian… …   Wikipedia

  • Teorema de Viviani — La suma de las longitudes, ℓ + m + n, es igual a la altura del triángulo. El teorema de Viviani, llamado así en honor de Vincenzo Viviani, enuncia que la suma de las distancias desde un punto a cada uno de los lados de un triángulo equilátero es… …   Wikipedia Español

  • Satz von Viviani — Der Satz von Viviani, benannt nach dem italienischen Mathematiker Vincenzo Viviani (1622–1703), ist eine einfache Aussage über gleichseitige Dreiecke: Ist P ein beliebiger Punkt im Inneren eines gleichseitigen Dreiecks, so ist die Summe der… …   Deutsch Wikipedia

  • Théorème de Viviani — Figure du théorème de Viviani Le théorème de Viviani est un théorème de géométrie euclidienne portant sur le triangle équilatéral. Son nom provient du mathématicien italien Vincenzo Viviani. Ce théorème est un cas particulier du théorème d Erdős… …   Wikipédia en Français

  • Теорема Вивиани — Сумма длин отрезков ℓ + m + n равна высоте равностороннего треугольника. Теорема Вивиани, названная в честь Винченцо Вивиани, утверждает, что сумма расстояний от произвольной точки внутри …   Википедия

  • List of mathematics articles (V) — NOTOC Vac Vacuous truth Vague topology Valence of average numbers Valentin Vornicu Validity (statistics) Valuation (algebra) Valuation (logic) Valuation (mathematics) Valuation (measure theory) Valuation of options Valuation ring Valuative… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • Equiangular polygon — In Euclidean geometry, an equiangular polygon is a polygon whose vertex angles are equal. If the lengths of the sides are also equal then it is a regular polygon.The only equiangular triangle is the equilateral triangle. Rectangles, including the …   Wikipedia

  • Equilateral polygon — In geometry, an equilateral polygon is a polygon which has all sides of the same length. For instance, an equilateral triangle is a triangle of equal edge lengths. All equilateral triangles are similar to each other, and have 60 degree internal… …   Wikipedia

  • Equilateral triangle — In geometry, an equilateral triangle is a triangle in which all three sides have equal lengths. In traditional or Euclidean geometry, equilateral triangles are also equiangular; that is, all three internal angles are also equal to each other and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”