# Classification of Clifford algebras

Classification of Clifford algebras

In mathematics, in particular in the theory of nondegenerate quadratic forms on real and complex vector spaces, the finite-dimensional Clifford algebras have been completely classified in terms of isomorphisms that preserve the Clifford product. In each case, the Clifford algebra is isomorphic to a matrix algebra[disambiguation needed ] over R, C, or H (the quaternions), or to a direct sum of two such algebras, though not in a canonical way.

## Notation and conventions

This article uses the (+) sign convention for Clifford multiplication so that

$v^2 = Q(v)\,$

for all vectors vV, where Q is the quadratic form on the vector space V. We will denote the algebra of n×n matrices with entries in the division algebra K by K(n). The direct sum of algebras will be denoted by K2(n) = K(n) ⊕ K(n).

## Bott periodicity

Clifford algebras exhibit a 2-fold periodicity over the complex numbers and an 8-fold periodicity over the real numbers, which is related to the same periodicities for homotopy groups of the stable unitary group and stable orthogonal group, and is called Bott periodicity. The connection is explained by the geometric model of loop spaces approach to Bott periodicity: there 2-fold/8-fold periodic embeddings of the classical groups in each other (corresponding to isomorphism groups of Clifford algebras), and their successive quotients are symmetric spaces which are homotopy equivalent to the loop spaces of the unitary/orthogonal group.

## Complex case

The complex case is particularly simple: every nondegenerate quadratic form on a complex vector space is equivalent to the standard diagonal form

$Q(u) = u_1^2 + u_2^2 + \cdots + u_n^2$

where n = dim V, so there is essentially only one Clifford algebra in each dimension. We will denote the Clifford algebra on Cn with the standard quadratic form by Cn(C).

There are two separate cases to consider, according to whether n is even or odd. When n is even the algebra Cn(C) is central simple and so by the Artin-Wedderburn theorem is isomorphic to a matrix algebra over C. When n is odd, the center includes not only the scalars but the pseudoscalars (degree n elements) as well. We can always find a normalized pseudoscalar ω such that ω2 = 1. Define the operators

$P_{\pm} = \frac{1}{2}(1\pm\omega).$

These two operators form a complete set of orthogonal idempotents, and since they are central they give a decomposition of Cn(C) into a direct sum of two algebras

$C\!\ell_n(\mathbb{C}) = C\!\ell_n^{+}(\mathbb{C}) \oplus C\!\ell_n^{-}(\mathbb{C})$ where $C\!\ell_n^\pm(\mathbb{C}) = P_\pm C\!\ell_n(\mathbb{C})$.

The algebras Cn±(C) are just the positive and negative eigenspaces of ω and the P± are just the projection operators. Since ω is odd these algebras are mixed by α (the linear map on V defined by v → −v):

$\alpha(C\!\ell_n^\pm(\mathbb{C})) = C\!\ell_n^\mp(\mathbb{C})$.

and therefore isomorphic (since α is an automorphism). These two isomorphic algebras are each central simple and so, again, isomorphic to a matrix algebra over C. The sizes of the matrices can be determined from the fact that the dimension of Cn(C) is 2n. What we have then is the following table:

 n Cℓn(C) 2m C(2m) 2m+1 C(2m) ⊕ C(2m)

The even subalgebra of Cn(C) is (non-canonically) isomorphic to Cn−1(C). When n is even, the even subalgebra can be identified with the block diagonal matrices (when partitioned into 2×2 block matrix). When n is odd, the even subalgebra are those elements of C(2m) ⊕ C(2m) for which the two factors are identical. Picking either piece then gives an isomorphism with Cn−1(C) ≅ C(2m).

## Real case

The real case is significantly more complicated, exhibiting a periodicity of 8 rather than 2, and there is a 2-parameter family of Clifford algebras.

Firstly, there are non-isomorphic quadratic forms of a given degree, classified by signature.

Every nondegenerate quadratic form on a real vector space is equivalent to the standard diagonal form:

$Q(u) = u_1^2 + \cdots + u_p^2 - u_{p+1}^2 - \cdots - u_{p+q}^2$

where n = p + q is the dimension of the vector space. The pair of integers (p, q) is called the signature of the quadratic form. The real vector space with this quadratic form is often denoted Rp,q. The Clifford algebra on Rp,q is denoted Cp,q(R).

A standard orthonormal basis {ei} for Rp,q consists of n = p + q mutually orthogonal vectors, p of which have norm +1 and q of which have norm −1.

### Unit pseudoscalar

The unit pseudoscalar in Cp,q(R) is defined as

$\omega = e_1e_2\cdots e_n.$

This is both a Coxeter element of sorts (product of reflections) and a longest element of a Coxeter group in the Bruhat order; this is an analogy. It corresponds to and generalizes a volume form (in the exterior algebra; for the trivial quadratic form, the unit pseudoscalar is a volume form), and lifts reflection through the origin (meaning that the image of the unit pseudoscalar is reflection through the origin, in the orthogonal group).

To compute the square $\omega^2=(e_1e_2\cdots e_n)(e_1e_2\cdots e_n)$, one can either reverse the order of the second group, yielding $\mbox{sgn}(\sigma)e_1e_2\cdots e_n e_n\cdots e_2 e_1$, or apply a perfect shuffle, yielding $\mbox{sgn}(\sigma)(e_1e_1e_2e_2\cdots e_ne_n)$. These both have sign $(-1)^{\lfloor n/2 \rfloor}=(-1)^{n(n-1)/2}$, which is 4-periodic (proof), and combined with $e_i e_i = \pm 1$, this shows that the square of ω is given by

$\omega^2 = (-1)^{n(n-1)/2}(-1)^q = (-1)^{(p-q)(p-q-1)/2} = \begin{cases}+1 & p-q \equiv 0,1 \mod{4}\\ -1 & p-q \equiv 2,3 \mod{4}.\end{cases}$

Note that, unlike the complex case, it is not always possible to find a pseudoscalar which squares to +1.

### Center

If n (equivalently, pq) is even the algebra Cp,q(R) is central simple and so isomorphic to a matrix algebra over R or H by the Artin-Wedderburn theorem.

If n (equivalently, pq) is odd then the algebra is no longer central simple but rather has a center which includes the pseudoscalars as well as the scalars. If n is odd and ω2 = +1 (equivalently, if pq ≡ 1 (mod 4)) then, just as in the complex case, the algebra Cp,q(R) decomposes into a direct sum of isomorphic algebras

$C\ell_{p,q}(\mathbb{R}) = C\ell_{p,q}^{+}(\mathbb{R})\oplus C\ell_{p,q}^{-}(\mathbb{R})$

each of which is central simple and so isomorphic to matrix algebra over R or H.

If n is odd and ω2 = −1 (equivalently, if pq ≡ −1 (mod 4)) then the center of Cp,q(R) is isomorphic to C and can be consider as a complex algebra. As a complex algebra, it is central simple and so isomorphic to a matrix algebra over C.

### Classification

All told there are three properties which determine the class of the algebra Cp,q(R):

• signature mod 2: n is even/odd: central simple or not
• signature mod 4: ω2 = ±1: if not central simple, center is RR or C
• signature mod 8: the Brauer class of the algebra (n even) or even subalgebra (n odd) is R or H

Each of these properties depends only on the signature pq modulo 8. The complete classification table is given below. The size of the matrices is determined by the requirement that Cp,q(R) have dimension 2p+q.

 p−q mod 8 ω2 Cℓp,q(R) (n = p+q) p−q mod 8 ω2 Cℓp,q(R) (n = p+q) 0 + R(2n/2) 1 + R(2(n−1)/2)⊕R(2(n−1)/2) 2 − R(2n/2) 3 − C(2(n−1)/2) 4 + H(2(n−2)/2) 5 + H(2(n−3)/2)⊕H(2(n−3)/2) 6 − H(2(n−2)/2) 7 − C(2(n−1)/2)

It may be seen that of all matrix ring types mentioned, there is only one type shared between both complex and real algebras: the type C(2m). For example, C2(C) and C3,0(R) are both determined to be C(2). It is important to note that there is a difference in the classifying isomorphisms used. Since the C2(C) is algebra isomorphic via a C-linear map (which is necessarily R-linear), and C3,0(R) is algebra isomorphic via an R-linear map, C2(C) and C3,0(R) are R-algebra isomorphic.

A table of this classification for p + q ≤ 8 follows. Here p + q runs vertically and pq runs horizontally (e.g. the algebra C1,3(R) ≅ H(2) is found in row 4, column −2).

 8 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 0 R 1 R2 C 2 R(2) R(2) H 3 C(2) R2(2) C(2) H2 4 H(2) R(4) R(4) H(2) H(2) 5 H2(2) C(4) R2(4) C(4) H2(2) C(4) 6 H(4) H(4) R(8) R(8) H(4) H(4) R(8) 7 C(8) H2(4) C(8) R2(8) C(8) H2(4) C(8) R2(8) 8 R(16) H(8) H(8) R(16) R(16) H(8) H(8) R(16) R(16) ω2 + − − + + − − + + − − + + − − + +

### Symmetries

There is a tangled web of symmetries and relationships in the above table. Write A[n] := AMn(R) for n×n matrices with coefficients in A, and Cℓ(p+1,q+1) for the real Clifford algebra.

$C\ell(p+1,q+1) = C\ell(p,q)[2]$
$C\ell(p+4,q) = C\ell(p,q+4)$

(Going over 4 spots in any row yields an identical algebra.)

From these Bott periodicity follows:

$C\ell(p+8,q) = C\ell(p+4,q+4) = C\ell(p,q)[2^4].$

If the signature satisfies pq ≡ 1 (mod 4) then

$C\ell(p+k,q) = C\ell(p,q+k).$

(The table is symmetric about columns with signature 1, 5, −3, −7, and so forth.) Thus if the signature satisfies pq ≡ 1 (mod 4),

$C\ell(p+k,q) = C\ell(p,q+k) = C\ell(p-k+k,q+k) = C\ell(p-k,q)[2^k] = C\ell(p,q-k)[2^k].$

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… …   Wikipedia

• Classification des algèbres de Clifford — En mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l algèbre de… …   Wikipédia en Français

• Algebre de Clifford — Algèbre de Clifford En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être vues comme l une des… …   Wikipédia en Français

• Algèbre De Clifford — En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être vues comme l une des généralisations possibles des… …   Wikipédia en Français

• Algèbre de Clifford — Pour les articles homonymes, voir Algèbre (homonymie). En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être… …   Wikipédia en Français

• Algèbre de Clifford du plan euclidien) — Algèbre de Clifford En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être vues comme l une des… …   Wikipédia en Français

• Algèbre de clifford — En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être vues comme l une des généralisations possibles des… …   Wikipédia en Français

• William Kingdon Clifford — Infobox Scientist name = William Clifford box width = 300px image width = 300px caption = William Kingdon Clifford (1845 1879) birth date = birth date|1845|05|04 birth place = Exeter, Devon, England death date = death date and… …   Wikipedia

• William Kingdon Clifford — William Kingdon Clifford. William Kingdon Clifford,(4 de Mayo de 1845 3 de Marzo de 1879) fue un matemático inglés que también escribió sobre Filosofía. Junto con Hermann Grassmann es el fundador de lo que ahora se conoce como álgebra geométrica …   Wikipedia Español

• Spinor — In mathematics and physics, in particular in the theory of the orthogonal groups (such as the rotation or the Lorentz groups), spinors are elements of a complex vector space introduced to expand the notion of spatial vector. Unlike tensors, the… …   Wikipedia