Morley's trisector theorem

Morley's trisector theorem
Morley triangle.svg

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles. Morley's Theorem is one of the most surprising and beautiful theorems in plane geometry.

Contents

Proofs

There are many proofs of Morley's theorem, some of which are very technical.[1] Several early proofs were based on delicate trigonometric calculations. The first published geometric proof was given by M.T.Naraniengar in 1909.[2] Recent proofs include an algebraic proof by Alain Connes (1988, 2004) extending the theorem to general fields, and John Conway's elementary geometry proof.[3][4] The latter starts with an equilateral triangle and shows that a triangle may be built around it which will be similar to any selected triangle. Interestingly, Morley's theorem does not hold in spherical[5] and hyperbolic geometry.

Fig 1.   Elementary proof of Morley's trisector theorem

Arguably the best proof uses the trigonometric identity :

sin 3θ ≡ 4 sin θ sin(60°+θ) sin(120°+θ).

Points D,E,F are constructed on BC as shown. Clearly α+β+γ = 60° therefore ∠CYA = 120°+β and the angles of ΔXEF are α, 60°+β, 60°+γ. Now sin(60°+β) = DX/XE and AC/sin(120°+β) = AY/sin γ by the sine rule, so the height h of ΔABC is given by

h = AB sin 3β = 4AB.AC.DX sin β sin γ / (XE.AY)
  = AC sin 3γ = 4AC.AB.DX sin γ sin β / (XF.AZ).

As the numerators are equal, XE.AY = XF.AZ. But ∠EXF = ∠ZAY and the sides about these angles are in the same ratio (because XE/XF = AZ/AY) so the triangles XEF and AZY must be similar. Thus the base angles of ΔAZY are 60°+β and 60°+γ. Similar arguments yield the base angles of ΔBXZ and ΔCYX and all the angles in the figure can now be easily determined.

The result can also be proved by the technique of reverse reconstruction.

Morley's triangles

Morley's theorem entails 18 equilateral triangles. The triangle described in the trisector theorem above, called the first Morley triangle, has vertices given in trilinear coordinates relative to a triangle ABC as follows:

A-vertex = 1 : 2 cos(C/3) : 2 cos(B/3)
B-vertex = 2 cos(C/3) : 1 : 2 cos(A/3)
C-vertex = 2 cos(B/3) : 2 cos(A/3) : 1

Another of Morley's equilateral triangle that is also central triangle is called the second Morley triangle and is given by these vertices:

A-vertex = 1 : 2 cos(C/3 − 2π/3) : 2 cos(B/3 − 2π/3)
B-vertex = 2 cos(C/3 − 2π/3) : 1 : 2 cos(A/3 − 2π/3)
C-vertex = 2 cos(B/3 − 2π/3) : 2 cos(A/3 − 2π/3) : 1

The third of Morley's 18 equilateral triangles that is also central triangle is called the third Morley triangle and is given by these vertices:

A-vertex = 1 : 2 cos(C/3 − 4π/3) : 2 cos(B/3 − 4π/3)
B-vertex = 2 cos(C/3 − 4π/3) : 1 : 2 cos(A/3 − 4π/3)
C-vertex = 2 cos(B/3 − 4π/3) : 2 cos(A/3 − 4π/3) : 1

The first, second, and third Morley triangles are pairwise homothetic. Another homothetic triangle is formed by the three points X on the circumcircle of triangle ABC at which the line XX −1 is tangent to the circumcircle, where X −1 denotes the isogonal conjugate of X. This equilateral triangle, called the circumtangential triangle, has these vertices:

A-vertex = csc(C/3 − B/3) : csc(B/3 + 2C/3) : −csc(C/3 + 2B/3)
B-vertex = −csc(A/3 + 2C/3) : csc(A/3 − C/3) : csc(C/3 + 2A/3)
C-vertex = csc(A/3 + 2B/3) : −csc(B/3 + 2A/3) : csc(B/3 − A/3)

A fifth equilateral triangle, also homothetic to others, is obtained by rotating the circumtangential triangle π/6 about its center. Called the circumnormal triangle, its vertices are as follows:

A-vertex = sec(C/3 − B/3) : −sec(B/3 + 2C/3) : −sec(C/3 + 2B/3)
B-vertex = −sec(A/3 + 2C/3) : sec(A/3 − C/3) : −sec(C/3 + 2A/3)
C-vertex = −sec(A/3 + 2B/3) : −sec(B/3 + 2A/3) : sec(B/3 − A/3)

An operation called "extraversion" can be used to obtain one of the 18 Morley triangles from another. Each triangle can be extraverted in three different ways; the 18 Morley triangles and 27 extravert pairs of triangles form the 18 vertices and 27 edges of the Pappus graph.[6]

Related triangle centers

The centroid of the first Morley triangle is given by

Morley center = X(356) = cos(A/3) + 2 cos(B/3)cos(C/3) : cos(B/3) + 2 cos(C/3)cos(A/3) : cos(C/3) + 2 cos(A/3)cos(B/3)

The first Morley triangle is perspective to triangle ABC, and the perspector is the point

1st Morley-Taylor-Marr center = X(357) = sec(A/3) : sec(B/3) : sec(C/3)

Notes

  1. ^ Bogomolny, Alexander, Morley's Miracle, Cut-the-knot, http://www.cut-the-knot.org/triangle/Morley/index.shtml, retrieved 2010-01-02 
  2. ^ Coxeter (1967).
  3. ^ J. Conway's proof, from Bogomolny.
  4. ^ Conway, John (2006), "The Power of Mathematics", in Blackwell, Alan; Mackay, David, Power, Cambridge University Press, pp. 36–50, ISBN 978-0-521-82377-7, http://www.cs.toronto.edu/~mackay/conway.pdf, retrieved 2010-10-08 
  5. ^ Morley's Theorem in Spherical Geometry, Java applet.
  6. ^ Guy (2007).

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Morley's theorem — may refer to: Morley s trisector theorem, a theorem related to geometry, discovered by Frank Morley Morley s categoricity theorem, a theorem related to model theory, discovered by Michael D. Morley This disambiguation page lists articles… …   Wikipedia

  • Trisector — Infobox Album | Name = Trisector Type = Album Artist = Van der Graaf Generator Released = March 17, 2008 Recorded = July 2nd 13th @ The Gaia Centre, Delabole, Cornwall Genre = Art rock Length = 53:45 Label = Virgin/EMI Producer = VdGG Reviews = * …   Wikipedia

  • Frank Morley — (September 9, 1860 – October 17, 1937) was a leading mathematician, known mostly for his teaching and research in the fields of algebra and geometry. Among his mathematical accomplishments was the discovery and proof of the celebrated Morley s… …   Wikipedia

  • Teorema de Morley — En geometría plana, el teorema de Morley establece que, en un triángulo cualquiera, los tres puntos de intersección entre trisectrices de ángulos adyacentes forman un triángulo equilátero, denominado triángulo de Morley. El teorema fue… …   Wikipedia Español

  • Triangle — This article is about the basic geometric shape. For other uses, see Triangle (disambiguation). Isosceles and Acute Triangle redirect here. For the trapezoid, see Isosceles trapezoid. For The Welcome to Paradox episode, see List of Welcome to… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of triangle topics — This list of triangle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or in triangular arrays such as Pascal s triangle or triangular matrices, or concretely in physical space.… …   Wikipedia

  • Angle trisection — The problem of trisecting the angle is a classic problem of compass and straightedge constructions of ancient Greek mathematics.Two tools are allowed # An un marked straightedge, and # a compass, Problem: construct an angle one third a given… …   Wikipedia

  • Equilateral triangle — In geometry, an equilateral triangle is a triangle in which all three sides have equal lengths. In traditional or Euclidean geometry, equilateral triangles are also equiangular; that is, all three internal angles are also equal to each other and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”