Kronecker–Weber theorem

Kronecker–Weber theorem

In algebraic number theory, the Kronecker–Weber theorem states that every finite abelian extension of the field of rational numbers Q, or in other words every algebraic number field whose Galois group over Q is abelian, is a subfield of a cyclotomic field, i.e. a field obtained by adjoining a root of unity to the rational numbers.

Kronecker provided most of the proof in 1853, with Weber in 1886 and Hilbert in 1896 filling in the gaps. It can be proven by a straightforward algebraic construction, though it is also an easy consequence of class field theory and can be proven by putting together local data over the p-adic fields for each prime "p".

For a given abelian extension "K" of Q there is in fact a "minimal" cyclotomic field that contains it. The theorem allows one to define the conductor of "K" as the smallest integer "n" such that "K" lies inside the field generated by the "n"-th roots of unity. For example the quadratic fields have as conductor the absolute value of their discriminant, a fact broadly generalised in class field theory.

ee also

*Hilbert's twelfth problem

References

*cite journal |last=Greenberg |first=M. J. |authorlink= |coauthors= |year=1974 |month= |title=An Elementary Proof of the Kronecker-Weber Theorem |journal=American Mathematical Monthly |volume=81 |issue=6 |pages=601–607 |doi=10.2307/2319208 |url= |accessdate= |quote=

External links

* [http://planetmath.org/encyclopedia/WeberFunction.html PlanetMath page]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Théorème de Kronecker-Weber — Le théorème de Kronecker Weber établit en théorie algébrique des nombres le résultat suivant : toute extension abélienne finie du corps des nombres rationnels, c est à dire tout corps de nombres algébriques dont le groupe de Galois sur est… …   Wikipédia en Français

  • Kronecker — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Kronecker peut désigner Leopold Kronecker (1823 1891), un mathématicien et logicien allemand, et dont les articles suivants portent le nom :… …   Wikipédia en Français

  • Leopold Kronecker — Infobox Scientist name = Leopold Kronecker caption = Leopold Kronecker birth date = birth date|1823|12|7|mf=y birth place = Liegnitz, Prussian province of Silesia residence = Prussian nationality = Prussian death date = death date and… …   Wikipedia

  • Heinrich Martin Weber — (5 March 1842 ndash; 17 May 1913) was a German mathematician who specialized in algebra and number theory. He is best known for his text Lehrbuch der Algebra published in 1895 and it is his work in algebra and number theory. Weber was born in… …   Wikipedia

  • Hilbert–Speiser theorem — In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any abelian extension K of the rational field Q . The Kronecker–Weber theorem… …   Wikipedia

  • Leopold Kronecker — Pour les articles homonymes, voir Kronecker. Leopold Kronecker Leopold Kronecker Naissance 7 décembre 1823 Legn …   Wikipédia en Français

  • List of mathematics articles (K) — NOTOC K K approximation of k hitting set K ary tree K core K edge connected graph K equivalence K factor error K finite K function K homology K means algorithm K medoids K minimum spanning tree K Poincaré algebra K Poincaré group K set (geometry) …   Wikipedia

  • Root of unity — The 5th roots of unity in the complex plane In mathematics, a root of unity, or de Moivre number, is any complex number that equals 1 when raised to some integer power n. Roots of unity are used in many branches of mathematics, and are especially …   Wikipedia

  • Hilbert's twelfth problem — Hilbert s twelfth problem, of the 23 Hilbert s problems, is the extension of Kronecker Weber theorem on abelian extensions of the rational numbers, to any base number field. The classical theory of complex multiplication does this for any… …   Wikipedia

  • Class field theory — In mathematics, class field theory is a major branch of algebraic number theory that studies abelian extensions of number fields. Most of the central results in this area were proved in the period between 1900 and 1950. The theory takes its name… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”