Robin boundary condition

Robin boundary condition

In mathematics, the Robin (or third type) boundary condition is a type of boundary condition, named after Victor Gustave Robin (1855-1897) who lectured in mathematical physics at the Sorbonne in Paris and worked in the area of thermodynamics. [Gustafson, K., (1998). Domain Decomposition, Operator Trigonometry, Robin Condition, "Contemporary Mathematics", 218. 432-437.] When imposed on an ordinary or a partial differential equation, it is a specification of a linear combination of the "values" of a function and the values of its "derivative" on the boundary of the domain. "Robin" should be pronounced as a French name, although some English speaking mathematicians anglicize the word.

Robin boundary conditions are a weighted combination of Dirichlet boundary conditions and Neumann boundary conditions. This contrasts to mixed boundary conditions, which are boundary conditions of different types specified on different subsets of the boundary. Robin boundary conditions are also called impedance boundary conditions, from their application in electromagnetic problems.

If Omega, is the domain on which the given equation is to be solved and partial Omega denotes its boundary, the Robin boundary condition is

: a u + b frac{partial u}{partial n} =g on partial Omega,

for some non-zero constants a, and b, and a given function g, defined on partial Omega. Here, u, is the unknown solution defined on Omega,, and partial u/partial n denotes the normal derivative at the boundary. More generally, a, and b, are allowed to be (given) functions, rather than constants.

In one dimension, if, for example, Omega= [0, 1] ,, the Robin boundary condition becomes the conditions

:a u(0) - bu'(0) =g(0),:a u(1) + bu'(1) =g(1).,

(notice the change of sign in front of the term involving a derivative, that is because the normal to [0, 1] at 0 points in the negative direction, while at 1 it points in the positive direction).

Robin boundary conditions are commonly used in solving Sturm-Liouville problems which appear in many contexts in science and engineering.

In addition, the Robin boundary condition is a general form of the insulating boundary condition for convection-diffusion equations. Here, the convective and diffusive fluxes at the boundary sum to zero:

:-D frac{partial c(0)}{partial x}+ u_x(0),c(0)=0,

where "D" is the diffusive constant, "u" is the convective velocity at the boundary and "c" is the concentration. The first term is a result of Fick's law of diffusion.

ee also

*Dirichlet boundary condition
*Neumann boundary condition
*Mixed boundary condition
*Cauchy boundary condition

References


*Gustafson, K. and T. Abe, (1998a). (Victor) Gustave Robin: 1855–1897, "The Mathematical Intelligencer", 20, 47-53.

*Gustafson, K. and T. Abe, (1998b). The third boundary condition - was it Robin's?, "The Mathematical Intelligencer", 20, 63-71.

*cite book
last = Eriksson
first = K.
coauthors = Estep, D.; Johnson, C.
title = Applied mathematics, body and soul
publisher = Berlin; New York: Springer
date = 2004
pages =
isbn = 3540008896

*cite book
last = Atkinson
first = Kendall E.
coauthors = Han, Weimin
title = Theoretical numerical analysis: a functional analysis framework
publisher = New York: Springer
date = 2001
pages =
isbn = 0387951423

*cite book
last = Eriksson
first = K.
coauthors = Estep, D.; Hansbo, P.; Johnson, C.
title = Computational differential equations
publisher = Cambridge; New York: Cambridge University Press
date = 1996
pages =
isbn = 0521567386

*cite book
last = Mei
first = Zhen
title = Numerical bifurcation analysis for reaction-diffusion equations
publisher = Berlin; New York: Springer
date = 2000
pages =
isbn = 3540672966


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Mixed boundary condition — Green: Neumann boundary condition; purple: Dirichlet boundary condition. In mathematics, a mixed boundary condition for a partial differential equation indicates that different boundary conditions are used on different parts of the boundary of… …   Wikipedia

  • Dirichlet boundary condition — In mathematics, the Dirichlet (or first type) boundary condition is a type of boundary condition, named after Johann Peter Gustav Lejeune Dirichlet (1805–1859) who studied under Cauchy and succeeded Gauss at University of Göttingen.[1] When… …   Wikipedia

  • Neumann boundary condition — In mathematics, the Neumann (or second type) boundary condition is a type of boundary condition, named after Carl Neumann.[1] When imposed on an ordinary or a partial differential equation, it specifies the values that the derivative of a… …   Wikipedia

  • Cauchy boundary condition — In mathematics, a Cauchy (pronounced koe she ) boundary condition imposed on an ordinary differential equation or a partial differential equation specifies both the values a solution of a differential equation is to take on the boundary of the… …   Wikipedia

  • Condition aux limites de Robin — En mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855 1897), qui a travaillé dans le domaine de la thermodynamique[1].… …   Wikipédia en Français

  • Victor Gustave Robin — (1855 1897) was a French mathematical analyst and applied mathematicianGustafson, Karl, and Abe, Takehisa. (Victor) Gustave Robin: 1855–1897, The Mathematical Intelligencer 20 (2) (1998), 47–53. ] Robert C. James, Glenn James, Mathematics… …   Wikipedia

  • Condition aux limites dynamique — En mathématiques, une condition aux limites dynamique correspond à une combinaison linéaire entre la dérivée temporelle et la dérivée normale de la solution d une équation aux dérivées partielles. Pour une équation aux dérivées partielles donnée… …   Wikipédia en Français

  • Condition aux limites mêlée — En mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou …   Wikipédia en Français

  • Condición de frontera de Robin — En matemáticas, la condición de frontera de Robin (o de tercer tipo) es un tipo de condición de frontera o contorno, denominado así en honor a Victor Gustave Robin (1855 1897),[1] cuando en una ecuación diferencial ordinaria o en una derivadas… …   Wikipedia Español

  • Partial differential equation — A visualisation of a solution to the heat equation on a two dimensional plane In mathematics, partial differential equations (PDE) are a type of differential equation, i.e., a relation involving an unknown function (or functions) of several… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”