- Hypomagnesemia
Infobox_Disease
Name = Hypomagnesemia
Caption =Magnesium
DiseasesDB = 6469
ICD10 = ICD10|E|83|4|e|70
ICD9 = ICD9|275.2
ICDO =
OMIM =
MedlinePlus = 000315
eMedicineSubj = med
eMedicineTopic = 3382
eMedicine_mult = eMedicine2|emerg|274 eMedicine2|ped|1122
MeshID =
The prefix hypo- means low (contrast with hyper-, meaning high). The middle magnes refers to magnesium. The end portion of the word, -emia, means 'in the blood' (note, however, that hypomagnesemia is usually indicative of a systemic magnesium deficit).Thus, Hypomagnesemia is anelectrolyte disturbance in which there is an abnormally low level ofmagnesium in the blood. Usually a serum level less than 0.7 mmol/l is used as reference. It must be noted that hypomagnesemia is not equal to magnesium deficiency. Hypomagnesemia can be present without magnesium deficiency andvice versa .It may result from a number of conditions including inadequate intake of magnesium, chronic
diarrhea ,malabsorption ,alcoholism ,chronic stress ,diuretic use and other disorders.Homeostasis
The body contains 21-28 grams of magnesium (1 mmol=2mEq=12.0 mg). Of this, 53% is located in
bone , 19% in non-muscular tissue, and 1% inextracellular fluid . For this reason, blood levels of magnesium are not an adequate means of establishing the total amount of available magnesium.Most of the serum magnesium is bound to chelators, (i.e. ATP, ADP,protein s andcitrate ). Roughly 33% is bound to proteins, and 5-10% is not bound. This "free" magnesium is essential in regulating intracellular magnesium. Normal plasma Mg is 1.7-2.3 mg/dl (0.69-0.94 mmol/l). Of this 60% is free, 33% is bound to proteins, and less than 7% is bound to citrate,bicarbonate andphosphate .Magnesium is abundant in nature. It can be found in green
vegetable s,chlorophyll ,cocoa -derivatives, nuts,wheat ,seafood , andmeat . It is resorbed through thesmall intestine , and to a lesser degree in the colon. Therectum andsigmoid colon can absorb magnesium.Hypermagnesemia has been reported after enemas containing magnesium. Forty percent of dietary magnesium is absorbed. Hypomagnesemia stimulates and hypermagnesemia inhibits this absorption.The
kidney s regulate the serum magnesium. About 2400 mg of magnesium passes through the kidneys, of which 5% (120 mg) is excreted throughurine . Theloop of Henle is the major site for Mg-homeostasis and 60% is resorbed.Magnesium homeostasis comprises three systems: kidney, small intestine, and bone. In the acute phase of magnesium deficiency there is an increase in absorption in the distal small intestine and tubular resorption in the kidneys. When this condition persists serum magnesium drops and is corrected with magnesium from bone tissue. The level of intracellular magnesium is controlled through the reservoir in bone tissue.
Metabolism
Magnesium is a cofactor in more than 300
enzyme regulated reactions. Most importantly forming and using ATP, i.e. kinase. There is a direct effect on sodium- (Na), potassium- (K) and calcium (Ca)channels. It has several effects:
*Potassium channels are inhibited by magnesium. Hypomagnesemia results in increasedefflux of intracellular Mg. The cell loses potassium which then is excreted by the kidneys, resulting inhypokalemia .
*Release of calcium from thesarcoplasmic reticulum is inhibited by magnesium. Low levels of magnesium stimulate the release of calcium and thereby an intracellular level of calcium. This effect similar to calcium inhibitors makes it "nature's calcium inhibitor." Lack of magnesium inhibits the release ofparathyroid hormone , which can result inhypoparathyroidism andhypocalcemia . Furthermore, it makes skeletal and muscle receptors less sensitive to parathyroid hormone.
*Through relaxation of bronchial smooth muscle it causesbronchodilation .
*The neurological effects are:
**reducing electrical excitation
**blocking release ofacetylcholine
**blocking N-methyl-D-aspartate, an excitatoryneurotransmitter of the central nervous system.Causes
Magnesium deficiency is not uncommon in hospitalized patients. Elevated levels of magnesium (
hypermagnesemia ), however, are nearly alwaysiatrogenic . 10-20% of allhospital patients, and 60-65% of patient in theintensive care unit (ICU) have hypomagnesemia. Hypomagnesiemia is underdiagnosed, as testing for serum magnesium levels is not routine. Hypomagnesemia results in increased mortality.Low levels of magnesium in your blood may mean either there is not enough magnesium in the diet, the intestines are not absorbing enough magnesium or the kidneys are excreting too much magnesium. Deficiencies may be due to the following conditions:
* alcoholism. Hypomagnesemia occurs in 30% of
alcohol abuse and 85% indelirium tremens , due tomalnutrition and chronicdiarrhea . Alcohol stimulates renal excretion of magnesium, which is also increased because of alcoholic and diabeticketoacidosis ,hypophosphatemia andhyperaldosteronism resulting from liver disease. Also hypomagnesemia is related tothiamine deficiency because magnesium is needed for transforming thiamine into thiamine pyrophosphate.
* diuretic use (the most common cause of hypomagnesemia)(loop and thiazides)
* antibiotics (i.e.aminoglycoside s,amphotericin ,pentamidine ,gentamicin ,tobramycin ,viomycin ) block resorption in theloop of Henle . 30% of patients using these antibiotics have hypomagnesemia,
* other drugs
**digitalis , displaces magnesium into the cell. Digitalis causes an increased intracellular concentration of sodium, which in turn increases intracellular calcium by passively decreasing the action of the sodium-calcium exchanger in the sarcolemma. The increased intracellular calcium gives a positive inotropic effect.
**adrenergics , displace magnesium into the cell
**cisplatin , stimulates renal excretion
**ciclosporin , stimulates renal excretion
* excess calcium
* increased levels of stress
* excess saturated fats
* excesscoffee ortea intake
* excess phosphoric or carbonic acids (soda pop)
* insufficient water consumption
* excess salt
* excess sugar intake
* insufficient selenium
* insufficient vitamin D or sunlight exposure
* insufficient vitamin B6
* gastrointestinal causes: the distal tractus digestivus secretes high levels of magnesium. Therefore, secretory diarrhoea can cause hypomagnesemia. Thus,Crohn's disease ,ulcerative colitis ,Whipple's disease andcoeliac sprue can all cause hypomagnesemia.
* renal magnesium loss inBartter's syndrome , postobstructive diuresis, diuretic phase of acute tubular necrosis (ATN) andkidney transplant
* diabetes mellitus: 38% of diabetic outpatient clinic visits involve hypomagnesemia, probably through renal loss because ofglycosuria orketoaciduria .
*acute myocardial infarction : within the first 48 hours after a heart-attack 80% of patients have hypomagnesemia. This could be the result of an intracellular shift because of an increase in catecholamines.
*malabsorption
* milk diet in infants
*acute pancreatitis
*hydrogen fluoride poisoning
* Gittleman Syndrome.
* Bartter Syndome.Clinical Features
Deficiency of magnesium causes weakness, muscle cramps,
cardiac arrhythmia , increased irritability of thenervous system with tremors,athetosis , jerking,nystagmus and an extensorplantar reflex . In addition, there may be confusion, disorientation,hallucinations , depression, epilepticfits ,hypertension ,tachycardia and tetany.Investigations
The diagnosis can be made by finding a
plasma magnesium concentration of less than 0.7mmol/l. Since most magnesium is intracellular, a body deficit can be present with a normal plasma concentration.In addition to hypomagnesemia, up to 40% cases will also have hypocalcemia while in up to 60% of cases, hypokalemia will also be present.TheECG shows a prolonged QT interval.Treatment
Treatment of hypomagnesemia depends on the degree of deficiency and the clinical effects. Oral replacement is appropriate for patients with mild symptoms, while intravenous replacement is indicated for patients with severe clinical effects. Intravenous
magnesium sulfate (MgSO4) can be given in the following conditions:Arrhythmia Magnesium is needed for the adequate function of the Na+/K+-ATPase pumps in the cells of the
heart . A lack of it depolarises and results intachyarrhythmia . Magnesium inhibits release ofpotassium , a lack of magnesium increases loss of potassium. Intracellular levels of potassium decrease and the cells depolarise.Digoxin increases this effect. Both digoxin and hypomagnesemia inhibit the Na-K-pump resulting in decreased intracellular potassium.Magnesium intravenously helps in refractory arrhythmia, most notably
torsade de pointes . Others areventricular tachycardia ,supraventricular tachycardia andatrial fibrillation .The effect is based upon decreased excitability by depolarisation and the slowing down of electric signals in the AV-node. Magnesium is a negative inotrope as a result of decrease calcium influx and calcium release from intracellular storage. It is just as effective as
verapamil . Inmyocardial infarction there is a functional lack of magnesium, suppletion will decrease mortality.Obstetric
Most importantly
pre-eclampsia . It has an indirect antithrombotic effect upon thrombocytes and the endothelial functions (increase inprostaglandin , decrease inthromboxane , decrease inangiotensin II ), microvascular leakage and vasospasm through its function similar tocalcium channel blocker s.Convulsion s are the result of cerebral vasospasm. The vasodilatatory effect of magnesium seems to be the major mechanism.Electrolyte disturbances
*
Hypokalemia : 42% of patients with hypokalemia also have hypomagnesemia, not responding to potassium supplementation. Magnesium is needed for the ATPase, Na-K-pump.
*Hypocalcemia is present in 33% of patients in the intensive care unit, not responding to calcium supplementation. This is because of decreased function of the calcium pump, but also because of a decreased release of calcium by inhibition ofparathyroid hormone release.Pulmonary
Acute
asthma , here there is a bronchodilatatory effect, probably by antagonizing a calcium-mediated constriction. Also, adrenergic stimulation, i.e. sympatheticomimetics used for treatment of asthma, might lower serum levels of magnesium, which must therefore be supplemented.Sedation andanxiolytic s may help in decreasingbronchoconstriction .References
# [http://www.cecilmedicine.com/buy.cfm?book=goldman Cecil Textbook of Medicine]
# [http://books.mcgraw-hill.com/getbook.php?isbn=0071391401 Harrison's Principles of Internal Medicine]
# [http://www.lww.com/product/?0-7817-3548-3 Intensive Care Medicine by Irwin and Rippe]
# [http://www.lww.com/product/?0-683-05565-8 The ICU Book by Marino]
# [http://www.oup.com/us/catalog/general/subject/Medicine/PrimaryCare/?ci=0192629220&view=usa The Oxford Textbook of Medicine]
#cite journal |author=al-Ghamdi SM, Cameron EC, Sutton RA |title=Magnesium deficiency: pathophysiologic and clinical overview |journal=Am. J. Kidney Dis. |volume=24 |issue=5 |pages=737–52 |year=1994 |pmid=7977315 |doi= |url=
#Delhumeau, J.C. Granry, J.P. Monrigal, F. Costerousse, "Indications Du Magnésium En Anesthésie-Réanimation", "Annales Francaises D'Anesthésie Et De Réanimation", 1995; 14, 406-416.
#cite journal |author=Durlach J, Durlach V, Bac P, Bara M, Guiet-Bara A |title=Magnesium and therapeutics |journal=Magnes Res |volume=7 |issue=3-4 |pages=313–28 |year=1994 |pmid=7786695 |doi= |url=
#cite journal |author=Faber MD, Kupin WL, Heilig CW, Narins RG |title=Common fluid-electrolyte and acid-base problems in the intensive care unit: selected issues |journal=Semin. Nephrol. |volume=14 |issue=1 |pages=8–22 |year=1994 |pmid=8140344 |doi= |url=
#Lee Goldman, J. Claude Bennett, "Cecil's Textbook of Medicine", 21st Edition, 2000, 1137-1139.
#Paul L. Marino, "The ICU Book", Second Edition 1998, Chapter 42, 660-672.
#A.E. Meinders, Professor of Internal Medicine at Leids Universitair Medisch Centrum, "Magnesium", "Bij Intensive Care Patiënten"
#cite journal |author=Mills R, Leadbeater M, Ravalia A |title=Intravenous magnesium sulphate in the management of refractory bronchospasm in a ventilated asthmatic |journal=Anaesthesia |volume=52 |issue=8 |pages=782–5 |year=1997 |pmid=9291766 |doi= |url=
#cite journal |author=Ramsay JG |title=Cardiac management in the ICU |journal=Chest |volume=115 |issue=5 Suppl |pages=138S–144S |year=1999 |pmid=10331347 |doi= |url=http://www.chestjournal.org/cgi/pmidlookup?view=long&pmid=10331347
#cite journal |author=Reinhart RA |title=Magnesium deficiency: recognition and treatment in the emergency medicine setting |journal=Am J Emerg Med |volume=10 |issue=1 |pages=78–83 |year=1992 |pmid=1736922 |doi= |url=
#cite journal |author=Reinhart RA, Desbiens NA |title=Hypomagnesemia in patients entering the ICU |journal=Crit. Care Med. |volume=13 |issue=6 |pages=506–7 |year=1985 |pmid=3996005 |doi= |url=
#cite journal |author=Ryzen E, Wagers PW, Singer FR, Rude RK |title=Magnesium deficiency in a medical ICU population |journal=Crit. Care Med. |volume=13 |issue=1 |pages=19–21 |year=1985 |pmid=3965244 |doi= |url=
#cite journal |author=Ryzen E |title=Magnesium homeostasis in critically ill patients |journal=Magnesium |volume=8 |issue=3-4 |pages=201–12 |year=1989 |pmid=2682045 |doi= |url=
#cite journal |author=Whang R, Hampton EM, Whang DD |title=Magnesium homeostasis and clinical disorders of magnesium deficiency |journal=Ann Pharmacother |volume=28 |issue=2 |pages=220–6 |year=1994 |pmid=8173141 |doi= |url=
#cite journal |author=Chareonpong-Kawamoto N, Yasumoto K |title=Selenium deficiency as a cause of overload of iron and unbalanced distribution of other minerals |journal=Biosci. Biotechnol. Biochem. |volume=59 |issue=2 |pages=302–6 |year=1995 |pmid=7766029 |doi= |url=ee also
*
Hypermagnesemia
*Hypomagnesemia with secondary hypocalcemia External links
* [http://ods.od.nih.gov/factsheets/magnesium.asp Magnesium ]
* [http://www.webelements.com/webelements/elements/text/Mg/index.html WebElements.com – Magnesium]
* [http://www.ctds.info/5_13_magnesium.html Magnesium Deficiency]
* [http://www.ars.usda.gov/is/AR/archive/may04/energy0504.htm Lack Energy? Maybe It's Your Magnesium Level]
* [http://www.iom.edu/Object.File/Master/7/294/0.pdf Dietary Reference Intake]
Wikimedia Foundation. 2010.