Sangaku

Sangaku

Sangaku or San Gaku (算額; lit. mathematical tablet) are Japanese geometrical puzzles in Euclidean geometry on wooden tablets created during the Edo period (1603-1867) by members of all social classes. The Dutch Japanologist Isaac Titsingh first introduced "sangaku" to the West when he returned to Europe in the late 1790s after more than twenty years in the Far East. [Association of American Geographers. (1911). " Annals of the Association of American Geographers," (Vol. I) p. 35.] [http://books.google.com/books?id=GR4aAAAAMAAJ&q=isaac+titsingh&dq=isaac+titsingh&ie=ISO-8859-1&pgis=1 ]

During this period Japan was completely isolated from the rest of the world so the tablets were created using Japanese mathematics, ("wasan"), not influenced by western mathematical thought. For example, the fundamental connection between an integral and its derivative was unknown so Sangaku problems on areas and volumes were solved by expansions in infinite series and term-by-term calculation.

The Sangaku were painted in color on wooden tablets which were hung in the precincts of Buddhist temples and Shinto shrines as offerings to the gods or as challenges to the congregants. Many of these tablets were lost during the period of modernization that followed the Edo period, but around nine hundred are known to remain.

A typical problem, which is presented on an 1824 tablet in the Gunma Prefecture, covers the relationship of three touching circles with a common tangent. Given the size of the two outer large circles, what is the size of the small circle between then? "The answer is:"

frac{1}{sqrt{r_{middle} = frac{1}{sqrt{r_{left} + frac{1}{sqrt{r_{right}

Fujita Kagen (1765-1821), a Japanese mathematician of prominence, published the first collection of "sangaku" problems, his "Shimpeki Sampo" (Mathematical problems Suspended from the Temple) in 1790, and in 1806 a sequel, the "Zoku Shimpeki Sampo".

In 1989, a Sangaku collection, "Japanese Temple Geometry Problems" was published by Hidetoshi Fukagawa and Daniel Pedoe, and in 2008 "Sacred Mathematics: Japanese Temple Geometry", was published by Hidetoshi Fukagawa and Tony Rothman.

ee also

* Seki Takakazu (Kowa Seki)
* Japanese theorem for concyclic polygons
* Japanese theorem for concyclic quadrilaterals
* Equal Incircles Theorem

Notes

References

* Association of American Geographers. "Annals of the Association of American Geographers," Vol. I, 1911.
* Fukagawa, Hidetoshi and Daniel Pedoe. "Japanese Temple Geometry Problems: Sangaku". Charles Babbage Research Centre, 1989. ISBN 0-919611-21-4.
* Rothman, Tony and Fugakawa, Hidetoshi. "Japanese Temple Geometry," "Scientific American", May 1998.
* Fukagawa, Hidetoshi and Tony Rothman, "Sacred Mathematics: Japanese Temple Geometry" (Princeton University Press, Princeton, 2008). ISBN 0-691127-45-X.
* Rehmeyer, Julie, [http://www.sciencenews.org/view/generic/id/9499/title/Math_Trek__Sacred_Geometry Sacred Geometry] , Science News, March 21, 2008.

External links

* [http://agutie.homestead.com/files/sangaku2.html Sangaku problem] by Antonio Gutierrez from "Geometry Step by Step from the Land of the Incas"
* http://www.sangaku.info/
* http://www.wasan.jp/english/
* http://www.loyola.edu/maru/sangaku.html
* [http://www.archimedes-lab.org/monthly_puzzles_66.html An interesting Sangaku problem] by Archimedes Laboratory
* http://www2.gol.com/users/coynerhm/0598rothman.html
* [http://www.cut-the-knot.org/Curriculum/Geometry/PythagorasWithVectenInJapan.shtml Pythagoras and Vecten Break Japan's Isolation]

* http://matcmadison.edu/is/as/math/kmirus/Reference/SanGaku.html
* [http://www.cut-the-knot.org/pythagoras/Sangaku.shtml Sangaku: Reflections on the Phenomenon]
* East Asia Institute, University of Cambridge: [http://www.oriental.cam.ac.uk/jbib/edoint11.html Further reading/bibliography]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Sangaku — Saltar a navegación, búsqueda Para otros usos de este término, véase Sangaku (música). En el interior de un cuadrado hay un círculo central. Cuatro círculos todos con radio diferente, tocan a este círculo central y a los lados del cuadrado. ¿Qué… …   Wikipedia Español

  • Sangaku — Pour les articles homonymes, voir Sangaku (homonymie). Exemple de Sangaku Les Sangaku ou San Gaku (算額 ; littéralement tablettes mathématiques) sont des énigmes géométriques japonaises de …   Wikipédia en Français

  • Sangaku (música) — Saltar a navegación, búsqueda Para otros usos de este término, véase Sangaku. Sangaku es un género de música popular de origen chino asociada en su origen a espectáculos de entretenimiento y saltimbanquis que fue incorporada en el repertorio del… …   Wikipedia Español

  • Sangaku (homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Un sangaku ou San Gaku (算額) est une énigme mathématique japonaise rédigée sous forme poétique sur une tablette de bois. Le sangaku ou sarugaku (猿楽) est l… …   Wikipédia en Français

  • Parc national de Chūbu-Sangaku — 中部山岳国立公園 Lac Kurobe Catégorie UICN V (paysage terrestre/marin protégé) Identifiant …   Wikipédia en Français

  • Chūbu-Sangaku National Park — 中部山岳国立公園 IUCN Category II (National Park) …   Wikipedia

  • Chubu-Sangaku National Park — Infobox protected area | name = Chubu Sangaku National Park 中部山岳国立公園 iucn category = II caption = locator x = locator y = location = Honshū, Japan nearest city = lat degrees = lat minutes = lat seconds = lat direction = long degrees = long… …   Wikipedia

  • Mount Hotaka — 穂高岳 Mount Hotaka from Tokugō tōge Elevation …   Wikipedia

  • Mount Yari — For other uses, see Yari (disambiguation). Mount Yari 槍ヶ岳 Mount Yari in the centre of the image (A view from Enzansō) …   Wikipedia

  • arts, East Asian — Introduction       music and visual and performing arts of China, Korea, and Japan. The literatures of these countries are covered in the articles Chinese literature, Korean literature, and Japanese literature.       Some studies of East Asia… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”