Burgers' equation

Burgers' equation

Burgers' equation is a fundamental partial differential equation from fluid mechanics. It occurs in various areas of applied mathematics, such as modeling of gas dynamics and traffic flow. It is named for Johannes Martinus Burgers (1895-1981).

For a given velocity "u" and viscosity coefficient u , the general form of Burgers' equation is:

:frac{partial u}{partial t} + u frac{partial u}{partial x} = u frac{partial^2 u}{partial x^2}.

When u = 0, Burgers' equation becomes the inviscid Burgers' equation:

:frac{partial u}{partial t} + u frac{partial u}{partial x} = 0,

which is a prototype for equations for which the solution can develop discontinuities (shock waves).

Solution

The inviscid Burgers' equation is a first order partial differential equation. Its solution can be constructed by the method of characteristics. This method yields that if X(t) is a solution of the ordinary differential equation

:frac{dX(t)}{dt} = u [X(t),t]

then U(t) := u [X(t),t] is constant as a function of t. Hence [X(t),U(t)] is a solution of the system of ordinary equations

:frac{dX}{dt}=U

:frac{dU}{dt}=0.

The solutions of this system are given in terms of the initial values by

:displaystyle X(t)=X(0)+tU(0)

:displaystyle U(t)=U(0).

Substitute X(0)= eta, then U(0)=u [X(0),0] =u(eta,0). Now the system becomes

:displaystyle X(t)=eta+tu(eta,0)

:displaystyle U(t)=U(0).

Conclusion:

:displaystyle u(eta,0)=U(0)=U(t)=u [X(t),t] =u [eta+tu(eta,0),t] .

This is an implicit relation that determines the solution of the inviscid Burgers' equation.

The viscous Burgers equation can be linearized by the Cole-Hopf substitution :u=-2 u frac{1}{phi}frac{partialphi}{partial x},which turns it into the diffusion equation:frac{partialphi}{partial t}= ufrac{partial^2phi}{partial x^2}.That allows one to solve an initial value problem::u(x,t)=-2 ufrac{partial}{partial x}lnBigl{(4pi u t)^{-1/2}int_{-infty}^inftyexpBigl [-frac{(x-x')^2}{4 u t} -frac{1}{2 u}int_0^{x'}u(x",0)dx"Bigr] dx'Bigr}.

External links

* [http://eqworld.ipmnet.ru/en/solutions/npde/npde1301.pdf Burgers' Equation] at EqWorld: The World of Mathematical Equations.


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Burgers — are hamburgers.Burgers may also refer to:* Johannes Martinus Burgers, Dutch physicist, namesake of Burgers equation and brother of W. G. Burgers * W. G. Burgers, Dutch crystallographer and brother of J. M. Burgers * Craig Burgers, a… …   Wikipedia

  • Équation de Burgers — L équation de Burgers est une équation aux dérivées partielles fondamentale issue de la mécanique des fluides. Elle apparaît dans divers domaines des mathématiques appliquées, comme la modélisation de la dynamique des gaz ou du trafic routier.… …   Wikipédia en Français

  • Burgers Gleichung — Die Burgersgleichung ist eine einfache nichtlineare partielle Differentialgleichung, die in verschiedenen Gebieten der angewandten Mathematik auftritt. Die Gleichung ist nach dem niederländischen Physiker Johannes Martinus Burgers benannt. Die… …   Deutsch Wikipedia

  • Burgers —   [ bʏrxərs],    1) Johannes Martinus, niederländischer Physiker, * Arnheim 13. 1. 1895, ✝ Tacoma Park (Maryland) 7. 6. 1981, Bruder von 2); Professor an der TH Delft (1918 55), danach an der University of Maryland in College Park (Maryland).… …   Universal-Lexikon

  • Burgers vector — The Burgers vector, often denoted by b, is a vector that represents the magnitude and direction of the lattice distortion of dislocation in a crystal lattice. [Callister, William D. Jr. Fundamentals of Materials Science and Engineering. John… …   Wikipedia

  • Burgers — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom.  Pour l’article homophone, voir Burger. Burgers peut faire référence à : Johannes Martinus Burgers, physicien hollandais. l équation de Burgers …   Wikipédia en Français

  • Équation de Korteweg et de Vries — En mathématiques, l équation de Korteweg et de Vries (KdV en abrégé) est un modèle mathématique pour les vagues en faible profondeur. C est un exemple très connu d équation aux dérivées partielles non linéaire dont on connait exactement les… …   Wikipédia en Français

  • Johannes Martinus Burgers — (Arnhem, Netherlands, January 13, 1895 ndash; Washington D.C., June 7, 1981) was a Dutch physicist and the brother of the physicist W. G. Burgers. Burgers studied in Leiden under Paul Ehrenfest, where he obtained his PhD in 1918. He is credited… …   Wikipedia

  • Partial differential equation — A visualisation of a solution to the heat equation on a two dimensional plane In mathematics, partial differential equations (PDE) are a type of differential equation, i.e., a relation involving an unknown function (or functions) of several… …   Wikipedia

  • Korteweg–de Vries equation — In mathematics, the Korteweg–de Vries equation (KdV equation for short) is a mathematical model of waves on shallow water surfaces. It is particularly notable as the prototypical example of an exactly solvable model, that is, a non linear partial …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”