Elementary — Elementary: *Education ** Elementary education, consists of the first years of formal, structured education that occur during childhood. **Elementary school, a school providing elementary or primary education. Historically, a school in the UK… … Wikipedia
Embedding — In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.When some object X is said to be embedded in another object Y , the embedding is… … Wikipedia
Elementary substructure — In model theory, given two structures mathfrak A 0 and mathfrak A, both of a common signature Sigma, we say that mathfrak A 0 is an elementary substructure of mathfrak A (sometimes notated mathfrak A 0 preceq mathfrak A [Monk 1976: 331 (= Def. 19 … Wikipedia
Kodaira embedding theorem — In mathematics, the Kodaira embedding theorem characterises non singular projective varieties, over the complex numbers, amongst compact Kähler manifolds. In effect it says precisely which complex manifolds are defined by homogeneous… … Wikipedia
Rank-into-rank — In set theory, a branch of mathematics, a rank into rank is a large cardinal lambda; satisfying one of the following four axioms (commonly known as rank into rank embeddings, given in order of increasing consistency strength):*Axiom I3: There is… … Wikipedia
Reinhardt cardinal — In set theory, a branch of mathematics, a Reinhardt cardinal is a large cardinal kappa;, suggested by harvs|txt=yes|last=Reinhardt|year=1967|year2=1974, that is the critical point of a non trivial elementary embedding j of V into itself.A minor… … Wikipedia
List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… … Wikipedia
Huge cardinal — In mathematics, a cardinal number κ is called huge if there exists an elementary embedding j : V → M from V into a transitive inner model M with critical point κ and Here, αM is the class of all sequences of length α whose elements are in M … Wikipedia
Core model — In set theory, the core model is a definable inner model of the universe of all sets. Even though set theorists refer to the core model , it is not a uniquely identified mathematical object. Rather, it is a class of inner models that under the… … Wikipedia
Subcompact cardinal — In mathematics, a subcompact cardinal is a certain kind of large cardinal number.A cardinal number κ is subcompact if and only if for every A⊂H(κ+) there is a non trivial elementary embedding j:(H(μ+), B) → (H(κ+), A) with critical point μ and… … Wikipedia