Magnetic field of celestial bodies

Magnetic field of celestial bodies

"See also Earth's magnetic field"

The magnetic field of a rotating body of conductive gas or liquid develops self-amplifying electric currents, and thus a self-generated magnetic field, due to a combination of differential rotation (different angular velocity of different parts of body), Coriolis forces and induction. The distribution of currents can be quite complicated, with numerous open and closed loops, and thus the magnetic field of these currents in their immediate vicinity is also quite multitwisted. At large distances, however, the magnetic fields of currents flowing in opposite directions cancel out and only a net dipole field survives, slowly diminishing with distance. Because the major currents flow in the direction of conductive mass motion (equatorial currents), the major component of the generated magnetic field is the dipole field of the equatorial current loop, thus producing magnetic poles near the geographic poles of a rotating body.

The magnetic fields of all celestial bodies are often aligned with the direction of rotation, with notable exceptions such as certain pulsars. Another feature of this dynamo model is that the currents are AC rather than DC. Their direction, and thus the direction of the magnetic field they generate, alternates more or less periodically, changing amplitude and reversing direction, although still more or less aligned with the axis of rotation.

The Sun's major component of magnetic field reverses direction every 11 years (so the period is about 22 years), resulting in a diminished magnitude of magnetic field near reversal time. During this dormancy time, the sunspots activity is maximized (because of the lack of magnetic braking on plasma) and, as a result, massive ejection of high energy plasma into the solar corona and interplanetary space takes place. Collisions of neighboring sunspots with oppositely directed magnetic fields result in the generation of strong electric fields near rapidly disappearing magnetic field regions. This electric field accelerates electrons and protons to high energies (kiloelectronvolts) which results in jets of extremely hot plasma leaving the Sun's surface and heating coronal plasma to high temperatures (millions of K).

Compact and fast-rotating astronomical objects (white dwarfs, neutron stars and black holes) have extremely strong magnetic fields. The magnetic field of a newly born fast-spinning neutron star is so strong (up to 108 teslas) that it electromagnetically radiates enough energy to quickly (in a matter of few million years) damp down the star rotation by 100 to 1000 times. Matter falling on a neutron star also has to follow the magnetic field lines, resulting in two hot spots on the surface where it can reach and collide with the star's surface. These spots are literally a few feet (about a metre) across but tremendously bright. Their periodic eclipsing during star rotation is believed to be the source of pulsating radiation (see pulsars).

Jets of relativistic plasma are often observed along the direction of the magnetic poles of active black holes in the centers of very young galaxies.

If the gas or liquid is very viscous (resulting in turbulent differential motion), the reversal of the magnetic field may not be very periodic. This is the case with the Earth's magnetic field, which is generated by turbulent currents in a viscous outer core.

ee also

* Earth's magnetic field
* Magnetic field
* Stellar magnetic field


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Magnetic field (disambiguation) — A magnetic field is the physical phenomenon produced by moving electric charges and exhibited by ferrous materials. Magnetic field or magnetic fields may also refer to: Directly related to primary meaning: Earth s magnetic field Magnetic field of …   Wikipedia

  • Earth's magnetic field — Computer simulation of the Earth s field in a normal period between reversals.[1] The tubes represent magnetic field lines, blue when the field points towards the center and yellow when away. The rotation axis of the Earth is centered and… …   Wikipedia

  • celestial mechanics — the branch of astronomy that deals with the application of the laws of dynamics and Newton s law of gravitation to the motions of heavenly bodies. [1815 25] * * * Branch of astronomy that deals with the mathematical theory of the motions of… …   Universalium

  • Poles of astronomical bodies — This article is about geographic, magnetic and other poles on planets and other astronomical bodies. For the Earth s poles, see North Pole, South Pole, North Magnetic Pole, and South Magnetic Pole. See also Pole of inaccessibility. The poles of… …   Wikipedia

  • Chaos theory — This article is about chaos theory in Mathematics. For other uses of Chaos theory, see Chaos Theory (disambiguation). For other uses of Chaos, see Chaos (disambiguation). A plot of the Lorenz attractor for values r = 28, σ = 10, b = 8/3 …   Wikipedia

  • Dynamo (disambiguation) — Dynamo or Dinamo may refer to: Contents 1 In Science and Engineering 1.1 In Engineering 1.2 Software …   Wikipedia

  • Astronomical object — Celestial object and Celestial body redirect here. For other uses, see Celestial (disambiguation). This article is about naturally occurring objects. For artificial objects, see Satellite. Astronomical objects or celestial objects are naturally… …   Wikipedia

  • cosmos — /koz meuhs, mohs/, n., pl. cosmos, cosmoses for 2, 4. 1. the world or universe regarded as an orderly, harmonious system. 2. a complete, orderly, harmonious system. 3. order; harmony. 4. any composite plant of the genus Cosmos, of tropical… …   Universalium

  • History of Physics —     History of Physics     † Catholic Encyclopedia ► History of Physics     The subject will be treated under the following heads: I. A Glance at Ancient Physics; II. Science and Early Christian Scholars; III. A Glance at Arabian Physics; IV.… …   Catholic encyclopedia

  • astronomy — /euh stron euh mee/, n. the science that deals with the material universe beyond the earth s atmosphere. [1175 1225; ME astronomie ( < AF) < L astronomia < Gk. See ASTRO , NOMY] * * * I Science dealing with the origin, evolution, composition,… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”