Quotient of subspace theorem — The quotient of subspace theorem is an important property of finite dimensional normed spaces, discovered by Vitali Milman.Let (X, | cdot |) be an N dimensional normed space. There exist subspaces Z subset Y subset X such that the following holds … Wikipedia
Linear subspace — The concept of a linear subspace (or vector subspace) is important in linear algebra and related fields of mathematics.A linear subspace is usually called simply a subspace when the context serves to distinguish it from other kinds of subspaces.… … Wikipedia
Thue–Siegel–Roth theorem — In mathematics, the Thue–Siegel–Roth theorem, also known simply as Roth s theorem, is a foundational result in diophantine approximation to algebraic numbers. It is of a qualitative type, stating that a given algebraic number α may not have too… … Wikipedia
Schmidt's theorem — In mathematics, Schmidt s theorem may refer to * the Krull Schmidt theorem * Wolfgang M. Schmidt s subspace theorem … Wikipedia
Invariant subspace — In mathematics, an invariant subspace of a linear mapping : T : V rarr; V from some vector space V to itself is a subspace W of V such that T ( W ) is contained in W . An invariant subspace of T is also said to be T invariant.If W is T invariant … Wikipedia
Min-max theorem — Variational theorem redirects here. The term is also sometimes applied to the variational principle. In linear algebra and functional analysis, the min max theorem, or variational theorem, or Courant–Fischer–Weyl min max principle, is a result… … Wikipedia
Dvoretzky's theorem — In mathematics, in the theory of Banach spaces, Dvoretzky s theorem is an important structural theorem proved by Aryeh Dvoretzky in the early 1960s.[1] It answered a question of Alexander Grothendieck. A new proof found by Vitali Milman in the… … Wikipedia
Perron–Frobenius theorem — In linear algebra, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding… … Wikipedia
Hahn–Banach theorem — In mathematics, the Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear operators defined on a subspace of some vector space to the whole space, and it also shows that there are enough… … Wikipedia
Invariant subspace problem — In the field of mathematics known as functional analysis, one of the most prominent open problems is the invariant subspace problem, sometimes optimistically known as the invariant subspace conjecture. It is the question whether the following… … Wikipedia