Incompressible surface

Incompressible surface

In mathematics, an incompressible surface, heuristically, is a surface, embedded in a 3-manifold, which has been simplified as much as possible while remaining "nontrivial" inside the 3-manifold.

For a precise definition, suppose that "S" is a compact surface properly embedded in a 3-manifold "M". Suppose that "D" is a disk, also embedded in "M", with

: D cap S = partial D.

Suppose finally that the curve partial D in "S" does not bound a disk inside of "S". Then "D" is called a compressing disk for "S" and we also call "S" a compressible surface in "M". If no such disk exists and "S" is not the 2-sphere, then we call "S" incompressible (or geometrically incompressible).

Note that we must exclude the 2-sphere to get any interesting consequences for the 3-manifold. Every 3-manifold has many embedded 2-spheres, and a 2-sphere embedded in a 3-manifold never has a compressing disc.

Sometimes one defines an incompressible sphere to be a 2-sphere in a 3-manifold that does not bound a 3-ball. Thus, such a sphere either does not separate the 3-manifold or gives a nontrivial connected sum decomposition. Alternatively, one can substitute "homotopy 3-ball" for "3-ball". These definitions are the same if the Poincare conjecture is true. Since this notion of incompressibility for a sphere is quite different from the above definition for surfaces, often an incompressible sphere is instead referred to as an essential sphere or reducing sphere.

There is also an algebraic version of incompressibility: Suppose iota: S ightarrow M is a proper embedding of a compact surface. Then "S" is pi_1-injective (or algebraically incompressible) if the induced map on fundamental groups iota_star: pi_1(S) ightarrow pi_1(M) is injective.

The loop theorem then implies that a two-sided, properly embedded, compact surface (not a 2-sphere) is incompressible if and only if it is pi_1-injective.

ee also

* compression
* Haken manifold
* Virtually Haken conjecture
* Thurston norm


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Fluide incompressible — Un fluide est dit incompressible lorsque son volume demeure constant sous l action d une pression externe. Sommaire 1 Existence 2 Écriture mathématique 3 Cas des gaz 4 …   Wikipédia en Français

  • Perpétuité incompressible en France — Article principal : Emprisonnement à perpétuité#France. La perpétuité réelle en France (ou « perpétuité incompressible ») est une peine exceptionnelle instaurée par la loi 94 89[1] du 1er février 1994 à l’initiative du… …   Wikipédia en Français

  • Fluide Incompressible — Un fluide est dit incompressible lorsque son volume demeure quasiment constant sous l action d une pression externe. En réalité, tous les fluides sont compressibles, certains plus que d autres. La compressibilité d un fluide mesure la variation… …   Wikipédia en Français

  • Perpétuité incompréssible en France — Perpétuité incompressible en France La perpétuité réelle en France (ou « perpétuité incompressible ») est une peine exceptionnelle instaurée par la loi 94 89 du 1er février 1994 à l’initiative du ministre de la Justice de… …   Wikipédia en Français

  • Capillary surface — In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid… …   Wikipedia

  • Champ Incompressible — Champ solénoïdal En analyse vectorielle, un champ solénoïdal ou champ incompressible désigne un champ vectoriel dont la divergence est nulle, ou de manière équivalente dont le flot préserve le volume euclidien. Sommaire 1 Terminologie 2… …   Wikipédia en Français

  • Champ incompressible — Champ solénoïdal En analyse vectorielle, un champ solénoïdal ou champ incompressible désigne un champ vectoriel dont la divergence est nulle, ou de manière équivalente dont le flot préserve le volume euclidien. Sommaire 1 Terminologie 2… …   Wikipédia en Français

  • Haken manifold — In mathematics, a Haken manifold is a compact, P² irreducible 3 manifold that contains a two sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable,… …   Wikipedia

  • Allen Hatcher — Allen Edward Hatcher is an American topologist and also a noted author. His book Algebraic Topology , which is the first in a series, is considered by many to be one of the best introductions to the subject.He received his Ph.D. under the… …   Wikipedia

  • List of geometric topology topics — This is a list of geometric topology topics, by Wikipedia page. See also: topology glossary List of topology topics List of general topology topics List of algebraic topology topics Publications in topology Contents 1 Low dimensional topology 1.1 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”