- Strong generating set
Let G leq S_n be a
permutation group . Let:B = (eta_1, eta_2, ldots, eta_r)
be a sequence of distinct
integers , eta_i in { 1, 2, ldots, n } , such that the pointwise stabilizer of B is trivial (ie: let B be a base for G ). Define:B_i = (eta_1, eta_2, ldots, eta_i) ,
and define G^{(i)} to be the pointwise stabilizer of B_i . A strong generating set (SGS) for G relative to the base B is a set
:S subset G
such that
:langle S cap G^{(i)} angle = G^{(i)}
for each 1 leq i leq r .
The base and the SGS are said to be "non-redundant" if
:G^{(i)} eq G^{(j)}
for i eq j .
A base and strong generating set (BSGS) for a group can be computed using the
Schreier-Sims algorithm .
Wikimedia Foundation. 2010.