Arbelos

Arbelos

In geometry, an arbelos is a plane region bounded by a semicircle of diameter 1, connected to semicircles of diameters "r" and (1 − "r"), all oriented the same way and sharing a common baseline. Archimedes is believed to be the first mathematician to study its mathematical properties, as it appears in propositions four through eight of his "Book of Lemmas". Arbelos literally means "shoemaker's knife" in Greek; it resembles the blade of a knife used by ancient cobblers. [Mathworld| title=Arbelos |urlname=Arbelos]

Properties

Area

A circle with a diameter "HA" is equal in area with the arbelos

Proof

If "BC" = 1 and "BA" = "r", then
*In triangle "BHA": r^2+h^2=x^2
*In triangle "CHA": (1-r)^2+h^2=y^2
*In triangle "BHC": x^2+y^2=1By substitution: y^2=(1-r)^2+x^2-r^2. By expansion: y^2=1-2r+x^2. By substituting "y"2this into the equation for triangle "BHC" and solving for "x"::x=sqrt{r}By substituting this, solve for "y" and "h":y=sqrt{1-r}:h=sqrt{r-r^2}The radius of the circle with center "O" is::frac{1}{2}sqrt{r-r^2}.Therefore, the area is::A_{circle}=pileft(frac{1}{2}sqrt{r-r^2} ight)^2:A_{circle}=frac{pi r}{4}-frac{pi r^2}{4}The area of the arbelos is the area of the large semicircle minus the area of the two smaller semicircles. Therefore the area of the arbelos is::A_{arbelos}=frac{pi}{8}-left(frac{pi}{2}left(frac{r}{2} ight)^2+frac{pi}{2}left(frac{1-r}{2} ight)^2 ight):A_{arbelos}=frac{pi-pi r^2-pi+2pi r+pi r^2}{8}:A_{arbelos}=frac{pi r}{4}-frac{pi r^2}{4}=A_{circle}"Q.E.D." [citeweb| url=http://jwilson.coe.uga.edu/EMT668/EMAT6680.2002/Rouhani/Essay3/arbelos1r.htm| title=The Arbelos| author=Behnaz Rouhani| accessdate=2008-06-13]

This property appears as Proposition 4 in Archimedes' "Book of Lemmas":

If AB be the diameter of a semicircle and N any point on AB, and if semicircles be described within the first semicircle and having AN, BN as diameters respectively, the figure included between the circumferences of the three semicircles is [what Archimedes called "αρβελοσ"] ; and its area is equal to the circle on PN as diameter, where PN is perpendicular to AB and meets the original semicircle in P.
[citeweb| url=http://www.cut-the-knot.org/proofs/arbelos.shtml| title=Arbelos - the Shoemaker's Knife |accessdate=2008-06-12| publisher=Cut the Knot]

Rectangle

The segment BH intersects the semicircle BA at D. The segment CH intersects the semicircle AC at E. Then DHEA is a rectangle.:"Proof": Angles BDA, BHC, and AEC are right angles because they are inscribed in semicircles (by Thales' theorem). The quadrilateral ADHE therefore has three right angles, so it is a rectangle. "Q.E.D."

Tangents

The line DE is tangent to semicircle BA at D and semicircle AC at E.:"Proof": Since angle BDA is a right angle, angle DBA equals π/2 minus angle DAB. However, angle DAH also equals π/2 minus angle DAB (since angle HAB is a right angle). Therefore triangles DBA and DAH are similar. Therefore angle DIA equals angle DOH, where I is the midpoint of BA and O is the midpoint of AH. But AOH is a straight line, so angle DOH and DOA are supplementary angles. Therefore the sum of angles DIA and DOA is π/2. Angle IAO is a right angle. The sum of the angles in any quadrilateral is π, so in quadrilateral IDOA, angle IDO must be a right angle. But ADHE is a rectangle, so the midpoint O of AH (the rectangle's diagonal) is also the midpoint of DE (the rectangle's other diagonal). As I (defined as the midpoint of BA) is the center of semicircle BA, and angle IDE is a right angle, then DE is tangent to semicircle BA at D. By analogous reasoning DE is tangent to semicircle AC at E. "Q.E.D."

ee also

* Archimedes' circles
* Archimedes' quadruplets
* Bankoff circle
* Pappus chain
* Salinon
* Schoch line
* Woo circles

References

Bibliography

*

*

*

External links

* [http://www.retas.de/thomas/arbelos/arbelos.html Arbelos – Amazing Properties] (an interactive applet illustrating many Arbelos properties) at [http://www.retas.de www.retas.de]
* [http://www.cut-the-knot.org/proofs/arbelos.shtml Arbelos] at cut-the-knot
* [http://agutie.homestead.com/files/ArchBooLem04.htm Arbelos, Proposition 4 - Archimedes' Book of Lemmas] by Antonio Gutierrez from Geometry Step by Step from the Land of the Incas.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Arbelos — L arbelos (ou tricercle de Mohr, du nom du mathématicien danois Georg Mohr) est une figure géométrique plane étudiée, entre autres, par Archimède ( 287 212, Syracuse). Le terme « arbelos » signifie couteau du savetier. Sommaire …   Wikipédia en Français

  • Arbelos — Das namengebende Schustermesser Der Arbelos (griechisch für Schustermesser) oder die Sichel des Archimedes ist eine spezielle, von drei Halbkreisen begrenzte geometrische Figur. Der berühmte griechische Mathematiker Archimedes soll die… …   Deutsch Wikipedia

  • Arbelos — Ar|be|los der; , <aus gr. árbēlos »rundes Schustermesser«> Kreisbogendreieck, bei dem in einem Halbkreis zwei nebeneinanderliegende Halbkreise so ausgespart werden, dass die Summe ihrer Durchmesser gleich dem Durchmesser des großen… …   Das große Fremdwörterbuch

  • arbelos — noun A plane region bounded by a semicircle of diameter 1, connected to semicircles of diameters r and (1 − r), all oriented the same way and sharing a common baseline …   Wiktionary

  • Arbelos — Arbẹlos   [griechisch »rundes Schustermesser«] der, / , Schusterkneif, Schustermesser, Sichel des Archimedes, das aus den Halbkreisen über den Strecken A̅B̅, A̅D̅ und D̅B̅ gebildete Kreisbogendreieck, dessen Flächeninhalt gleich dem des Kreises… …   Universal-Lexikon

  • Tricercle de Mohr — Arbelos L arbelos (ou tricercle de Mohr, du nom du mathématicien danois Georg Mohr) est une figure géométrique plane étudiée, entre autres, par Archimède ( 287 212, Syracuse). Le terme « arbelos » signifie couteau du savetier. Sommaire …   Wikipédia en Français

  • Bankoff — Leon Bankoff (* 13. Dezember 1908 in New York City; † 16. Februar 1997 in Los Angeles) war ein amerikanischer Zahnarzt und Mathematiker. Inhaltsverzeichnis 1 Leben 2 Siehe auch 3 Quellen …   Deutsch Wikipedia

  • Leon Bankoff — (* 13. Dezember 1908 in New York City; † 16. Februar 1997 in Los Angeles) war ein amerikanischer Zahnarzt und Mathematiker. Inhaltsverzeichnis 1 Leben 2 Siehe auch 3 Quellen …   Deutsch Wikipedia

  • Archimedean circle — In geometry, an Archimedean circle is defined in an arbelos as any circle with a radius rho; where: ho=frac{1}{2}rleft(1 r ight).There are over fifty different known ways to construct Archimedean circles. [citeweb| url=http://home.wxs.nl/… …   Wikipedia

  • Sichel des Archimedes — Das namengebende Schustermesser Der Arbelos (griechisch für Schustermesser) oder die Sichel des Archimedes ist eine spezielle, von drei Halbkreisen begrenzte geometrische Figur. Der berühmte griechische Mathematiker Archimedes soll die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”