Darboux integral

Darboux integral

In real analysis, a branch of mathematics, the Darboux integral or Darboux sum is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. Darboux integrals have the advantage of being simpler to define than Riemann integrals. Darboux integrals are named after their discoverer, Gaston Darboux.

Definition

A partition of an interval [a,b] is a finite sequence of values xi such that

a = x_0 < x_1 < \cdots < x_n = b . \,\!

Each interval [xi−1,xi] is called a subinterval of the partition. Let ƒ:[a,b]→R be a bounded function, and let

P = (x_0, \ldots, x_n) \,\!

be a partition of [a,b]. Let

\begin{align}
 M_i = \sup_{x\in[x_{i-1},x_{i}]} f(x) , \\
 m_i = \inf_{x\in[x_{i-1},x_{i}]} f(x) .
\end{align}
Lower (green) and upper (green plus lavender) Darboux sums for four subintervals

The upper Darboux sum of ƒ with respect to P is

U_{f, P} = \sum_{i=1}^n (x_{i}-x_{i-1}) M_i . \,\!

The lower Darboux sum of ƒ with respect to P is

L_{f, P} = \sum_{i=1}^n (x_{i}-x_{i-1}) m_i . \,\!

The upper Darboux integral of ƒ is

U_f = \inf\{U_{f,P} \colon P \text{ is a partition of } [a,b]\} . \,\!

The lower Darboux integral of ƒ is

L_f = \sup\{L_{f,P} \colon P \text{ is a partition of } [a,b]\} . \,\!

If Uƒ = Lƒ, then we say that ƒ is Darboux-integrable and set

\int_a^b {f(t)\,dt} = U_f = L_f , \,\!

the common value of the upper and lower Darboux integrals.

Facts about the Darboux integral

When passing to a refinement, the lower sum increases and the upper sum decreases.

A refinement of the partition

x_0,\ldots,x_n  \,\!

is a partition

y_0, \ldots, y_m \,\!

such that for every i with

0 \le i \le n \,\!

there is an integer r(i) such that

 x_{i} = y_{r(i)} . \,\!

In other words, to make a refinement, cut the subintervals into smaller pieces and do not remove any existing cuts. If

P' = (y_0,\ldots,y_m) \,\!

is a refinement of

P = (x_0,\ldots,x_n) , \,\!

then

U_{f, P} \ge U_{f, P'} \,\!

and

L_{f, P} \le L_{f, P'} . \,\!

If P1, P2 are two partitions of the same interval (one need not be a refinement of the other), then

L_{f, P_1} \le U_{f, P_2} . \,\!.

It follows that

L_f \le U_f . \,\!

Riemann sums always lie between the corresponding lower and upper Darboux sums. Formally, if

P = (x_0,\ldots,x_n) \,\!

and

T = (t_1,\ldots,t_n) \,\!

together make a tagged partition

 x_0 \le t_1 \le x_1\le \cdots \le x_{n-1} \le t_n \le x_n \,\!

(as in the definition of the Riemann integral), and if the Riemann sum of ƒ corresponding to P and T is R, then

L_{f, P} \le R \le U_{f, P}.\,\!

From the previous fact, Riemann integrals are at least as strong as Darboux integrals: If the Darboux integral exists, then the upper and lower Darboux sums corresponding to a sufficiently fine partition will be close to the value of the integral, so any Riemann sum over the same partition will also be close to the value of the integral. It is not hard to see that there is a tagged partition that comes arbitrarily close to the value of the upper Darboux integral or lower Darboux integral, and consequently, if the Riemann integral exists, then the Darboux integral must exist as well.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Integral — This article is about the concept of integrals in calculus. For the set of numbers, see integer. For other uses, see Integral (disambiguation). A definite integral of a function can be represented as the signed area of the region bounded by its… …   Wikipedia

  • Darboux — Jean Gaston Darboux Jean Gaston Darboux (* 14. August 1842 in Nîmes/Languedoc; † 23. Februar 1917 in Paris) war ein französischer Mathematiker. Inhaltsverzeichnis 1 …   Deutsch Wikipedia

  • Darboux, Jean-Gaston — ▪ French mathematician born Aug. 14, 1842, Nîmes, France died Feb. 23, 1917, Paris  French mathematician who made important contributions to geometry and analysis and after whom the Darboux integral is named.       After acting as an assistant in …   Universalium

  • Integral de Darboux — En el área de Análisis Matemático, la integral de Darboux, es una forma de abordar el problema de la integración, denotada usualmente de la siguiente forma: esta integral es equivalente a la integral de Riemann. El enfoque de la integral de… …   Wikipedia Español

  • Integral de Lebesgue — La integral de una función no negativa puede ser interpretada como el área bajo la curva. En matemática, la integración de una función no negativa (por considerar el caso más simple) puede considerarse como el área entre la gráfica de una curva y …   Wikipedia Español

  • Darboux derivative — The Darboux derivative of a map between a manifold and a Lie group is a variant of the standard derivative. In a certain sense, it is arguably a more natural generalization of the single variable derivative. It allows a generalization of the… …   Wikipedia

  • Riemann integral — In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. While the Riemann integral is unsuitable for many theoretical… …   Wikipedia

  • Gaston Darboux — Jean Gaston Darboux Jean Gaston Darboux (* 14. August 1842 in Nîmes/Languedoc; † 23. Februar 1917 in Paris) war ein französischer Mathematiker. Inhaltsverzeichnis 1 …   Deutsch Wikipedia

  • Jean-Gaston Darboux — (* 14. August 1842 in Nîmes/Languedoc; † 23. Februar 1917 in Paris) war ein französischer Mathematiker. Inhaltsverzeichnis 1 …   Deutsch Wikipedia

  • Riemannsches Integral — Das Riemannsche Integral (auch Riemann Integral) ist eine nach dem deutschen Mathematiker Bernhard Riemann benannte Methode zur Präzisierung der anschaulichen Vorstellung des Flächeninhaltes zwischen der x Achse und dem Graphen einer Funktion.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”