- Saccade
A saccade is a fast movement of an eye, head or other part of an animal's body or device. It can also be a fast shift in
frequency of an emitted signal or other quick change. However, this article deals with saccadic eye motion.Eye saccades are quick, simultaneous movements of both eyes in the same direction. Cassin, B. and Solomon, S. "Dictionary of Eye Terminology". Gainsville, Florida: Triad Publishing Company, 1990 ] Initiated by the frontal lobe of the brain (Brodmann area 8), saccades serve as a mechanism for fixation,rapid eye movement and the fast phase of optokineticnystagmus . The word appears to have been coined in the 1880s by Frenchophthalmologist Émile Javal, who used amirror on one side of a page to observe eye movement in silent reading, and found that it involves a succession of discontinuous individual movements.Javal, É 'Essai sure la physiologie de la lecture', in "Annales d'oculistique" 80, pp. 61–73, 1878]Function
Humans and other animals do not look at a scene in a steady way. Instead, the eyes move around, locating interesting parts of the scene and building up a mental 'map' corresponding to the scene. One reason for saccades of the human eye is that the central part of the
retina , thefovea , plays a critical role in resolving objects. By moving the eye so that small parts of a scene can be sensed with greater resolution, body resources can be used more efficiently.In addition, the human eye is in a constant state of vibration, oscillating back and forth at a rate of about 30-70 Hz. These
microsaccade s are tiny movements, roughly 20arcsecond s in excursion and are completely imperceptible under normal circumstances. They serve to refresh the image being cast onto the rod cells and cone cells at the back of the eye. Without microsaccades, staring fixedly at something would cause the vision to cease after a few seconds since rods and cones only respond to a change inluminance .Fact|date=May 2007Timing and Kinematics
Saccades are the fastest movements produced by the human body. The peak angular speed of the eye during a saccade reaches up to 1000°/sec in monkeys (somewhat less in humans). Saccades to an unexpected stimulus normally take about 200 milliseconds to initiate and then last from about 20 to 200 milliseconds, depending on their amplitude. Under certain laboratory circumstances the latency of saccade production can be cut nearly in half (express saccades).
The amplitude of a saccade is the angular distance that the eye travels during the movement. For amplitudes up to about 60 degrees, the
velocity of a saccade linearly depends on the amplitude (the so called "saccadic main sequence"). For instance, a 10° amplitude is associated with a velocity of 300°/sec, and 30° is associated with 500°/sec. In saccades larger than 60 degrees, the peakvelocity starts to plateau (non-linearly) toward the maximum velocity attainable by the eye.Saccades may rotate the eyes horizontally or vertically, or in any oblique direction to change gaze direction (the direction of sight that corresponds to the fovea), but normally saccades do not rotate the eyes torsionally. Torsion can be defined as clockwise or counterclockwise rotation around the line of sight when the eye is at its central primary position. Defined this way,
Listing's law says that when the head is motionless, torsion is kept at zero.Head-fixed saccades can have amplitudes of up to 90° (from one edge of the oculomotor range to the other), but in normal conditions saccades are far smaller, and any shift of gaze larger than about 20° is accompanied by a head movement. During such gaze saccades, first the eye produces a saccade to get gaze on target, whereas the head follows more slowly and the vestibulo-ocular reflex causes the eyes to roll back in the head to keep gaze on the target. During these head movements Listing's law is no longer obeyed.
Types
Saccades are measured or investigated in four ways:cite journal |author= Rommelse NN, Van der Stigchel S, Sergeant JA |title= A review on eye movement studies in childhood and adolescent psychiatry |journal= Brain Cogn |volume= |issue= |pages= |year=2008 |pmid=18835079 |doi=10.1016/j.bandc.2008.08.025]
* In a "visually guided saccade", an observer moves eyes towards a visual onset, or stimulus. This is typically included as a baseline when measuring other types of saccades.
* In an "antisaccade", an observer moves eyes away from the visual onset. They are more delayed than visually guided saccades, and observers often make erroneous saccades in the wrong direction. A successful antisaccade requires inhibiting a reflexive saccade to the onset location, and voluntarily moving the eye in the other direction.
* In a "memory guided saccade", an observer moves eyes towards a remembered point, with no visual stimulus.
* In "smooth pursuit eye movements", an observer tracks a small object moving with a constant slow speed. They emphasize basic eye control, not cognitive processes.
Pathophysiologic saccades
Saccadic oscillations not filling the normal function are a deviation from a healthy or normal condition.
*
Nystagmus is characterised by the combination of 'slow phases', which usually take the eye off the point of regard, interspersed with saccade-like 'quick phases' that serve to bring the eye back on target. Pathological slow phases may either be due to an imbalance in thevestibular system , or damage to thebrainstem 'neural integrator' that normally holds the eyes in place.
*Opsoclonus orocular flutter , on the other hand, are composed purely of fast-phase saccadic eye movements.Without the use of objective recording techniques, it may be very difficult to distinguish between these conditions.Eye movement measurements are also used to investigate psychiatric disorders. For example,
ADHD is characterized by an increase of antisaccade errors and an increase in delays for visually guided saccade.accade adaptation
When the brain is led to believe that the saccades it is generating are too large or too small (by an experimental manipulation in which a saccade-target steps back or forward, contingent on the eye movement made to acquire it), saccade amplitude gradually decreases (or increases), an adaptation (also termed gain adaptation) widely seen as a simple form of motor learning, possibly driven by an effort to correct visual error. This effect was first discovered in humans with ocular muscle weakness brought on by disease or tenectomy. In these cases, it was noticed that the patients would make hypometric (small) saccades with the affected eye, and that they were able to correct these errors over time. This led to the realization that visual error (the difference between the intended past-saccadic point of regard and the target position) played a role in the homeostatic regulation of accurate saccades. Since then, much scientific research has been devoted to various experiments employing saccade adaptation.
accades and Vision
accadic masking
It is a common but false belief that during the saccade, no information is passed through the optic nerve to the brain. Whereas low spatial frequencies (the 'fuzzier' parts) are attenuated, higher spatial frequencies (an image's fine details) which would otherwise be blurred out by the eye movement remain unaffected. This phenomenon, known as saccadic masking or saccadic suppression, is known to occur in the time preceding a saccadic eye movement, implying neurological reasons for the effect, rather than simply the image's motion blur.
A person may observe the saccadic masking effect by standing in front of a mirror and looking from one eye to the next (and vice versa). The subject will not experience any movement of the eyes nor any evidence that the optic nerve has momentarily ceased transmitting. Due to saccadic masking, the eye/brain system not only hides the eye movements from the individual but also hides the evidence that anything has been hidden. Of course, a second observer watching the experiment will see the subject's eyes moving back and forth. The function's main purpose is to prevent smearing of the image.
patial Updating
When a visual stimulus is seen before a saccade, subjects are still able to make another saccade back to that image, even if it is no longer visible. This shows that the brain is somehow able to take into account the intervening eye movement. It is thought that the brain does this by temporarily recording a copy of the command for the eye movement, and comparing this to the remembered image of the target. This is called spatial updating. Neurophysiologists who have recorded from cortical areas for saccades during spatial updating have found that memory related signals get remapped during each saccade.
Trans-saccadic Perception
It is also thought that perceptual memory is updated during saccades so that information gathered across fixations can be compared and synthesized. However, the entire visual image is not updated during each saccade, only 3-4 features or objects if they are attended to. Some scientists believe that this is the same as visual working memory, but as in spatial updating the eye movement has to be accounted for. The process of retaining information across a saccade is called trans-saccadic memory and the process of integrating information from more than one fixation is called trans-saccadic integration.
Comparative physiology
Saccades are a widespread phenomenon across animals with image-forming visual systems. They have been observed in animals across three phyla, including animals that do not have a fovea (most vertebrates do not) and animals that cannot move their eyes independently of their head (such as insects). [Land, MF. "Motion and vision: why animals move their eyes". "J Comp Physiol A". 1999 185:341–352.] Therefore, while saccades serve in humans and other primates to increase the effective visual resolution of a scene, there must be additional reasons for the behavior. The most frequently suggested of these reasons is to avoid blurring of the image, which would occur if the response time of a
photoreceptor is longer than the time a given portion of the image is stimulating that photoreceptor as the image drifts across the eye.In birds, saccadic eye movements serve a further function. The avian retina is highly developed. It is thicker than the mammalian retina and has a higher metabolic activity, but it lacks proper vasculature. Therefore, the retinal cells must obtain nutrients via diffusion through the
choroid and from thevitreous humor . The pecten is a specialised structure in the avian retina. It is a highly vascular structure that projects into the vitreous humor. Experimentally, it has been shown that during saccadic eye oscillations (which occupy up to 12% of avian viewing time), the pecten acts as an agitator, propellingperfusate towards the retina. Thus, in birds, saccadic eye movements appear to be important in retinal nutrition and respiration. [Pettigrew JD, Wallman J. "Saccadic oscillations facilitate ocular perfusion from the avian pecten". "Nature". 1990 Jan 25; 343(6256): 362–3 PMID 14756148.]ee also
*
Eye movement
*Eye movement in language reading
*Eye movement in music reading
*Frontal eye fields
*Medial eye fields
*Paramedian pontine reticular formation
*Saccadic suppression of image displacement
*Whip pan References
Wikimedia Foundation. 2010.