- Egg activation
After the fusion of the sperm plasma membrane and the egg plasma membrane after fertilization, animal eggs go through a process called egg activation to prepare the egg for development.
There are three functions of egg activation:
# Block to polyspermy
# Activation of egg metabolism
# Resumption of the cell cycleperm trigger of egg activation
The sperm may trigger egg activation via the interaction between a sperm protein and an egg surface receptor. It is possible that a G protein receptor is activated by the sperm binding which activates a tyrosine kinase which then activates PLC. The inositol signaling system has been implicated as the pathway involved with egg activation. IP3 and DAG are produced from the cleavage of PIP2 by phospholipase C (
PLC ). However, another hypothesis is that a soluble 'sperm factor' diffuses from the sperm into the egg cytosol upon sperm-oocyte fusion. The results of this interaction could activate asignal transduction pathway that usessecond messengers . A novel PLC isoform, PLC zeta, may be the equivalent of the mammalian sperm factor. A recent paper shows that mammaliam sperm contain PLC zeta which can start the signaling cascade [cite journal | author = Saunders C, Larman M, Parrington J, Cox L, Royse J, Blayney L, Swann K, Lai F | title = PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. | journal = Development | volume = 129 | issue = 15 | pages = 3533–44 | year = 2002 | pmid = 12117804]Fast and slow block to polyspermy
Polyspermy is the condition when multiple sperm fuse with a single egg. This results in duplications of genetic material. In sea urchins, the block to polyspermy comes from two mechanisms: thefast block and theslow block . The fast block is an electrical block to polyspermy. The resting potential of an egg is -70mV. After contact with sperm, an influx of sodium ions increases the potential up to +20mV. The slow block is through a biochemical mechanism triggered by a wave of calcium increase. The rise of calcium is both necessary and sufficient to trigger the slow block. In thecortical reaction ,cortical granules directly beneath the plasma membrane are released into the space between the plasma membrane and the vitelline membrane (the perivitelline space). An increase in calcium triggers this release. The contents of the granules containproteases ,mucopolysaccharides ,hyalin , andperoxidases . The proteases cleave the bridges connecting the plasma membrane and the vitelline membrane and cleave the bindin to release the sperm. The mucopolysaccharides attract water to raise the vitelline membrane. The hyalin forms a layer adjacent to the plasma membrane and the peroxidases cross-link the protein in the vitelline membrane to harden it and make it impenetrable to sperm. Through these molecules the vitelline membrane is transformed into the fertilization membrane or fertilization envelope. In mice, the zona reaction is the equivalent to the cortical reaction in sea urchins. The terminal sugars from ZP3 are cleaved to release the sperm and prevent new binding.Late responses
The combined increase of calcium signal and pH leads to a dramatic increase in protein synthesis. The protein synthesis uses mRNAs that are already present in the oocyte. These proteins direct the next events of embryogenesis such as the fusion of the egg and sperm
pronuclei to form the diploid embryonic nucleus. The fusion is driven by microtubule-dependent movement of the female pronucleus to the male pronucleus.References
{Refimprove|date=December 2007
Wikimedia Foundation. 2010.