# Rodrigues equation

Rodrigues equation

The Rodrigues equation is an equation used in chromatography to describe the efficiency of a bed of permeable (large-pore) particles. It is thus an extension of Van Deemter's equation. It was developed by Alirio E. Rodrigues "et al"cite journal
title = Permeable packings and perfusion chromatography in protein separation
journal = Journal of Chromatography B: Biomedical Sciences and Applications
author = Alirio E. Rodrigues
volume = 699
issue = 1-2
date = 10 October 1997
year = 1997
pages = 47-61
doi = 10.1016/S0378-4347(97)00197-7
] .

----

$HETP = A + frac\left\{B\right\}\left\{u\right\} + C cdot f\left( lambda \right) cdot u$

Where

* HETP is the height equivalent to a theoretical plate
* A = Eddy diffusion
* B = Longitudinal diffusion
* C = Resistance to mass transfer
* u = Flow rate
* $f\left( lambda \right) = frac\left\{3\right\}\left\{ lambda \right\} left \left[ frac\left\{1\right\}\left\{tanh\left( lambda \right)\right\} - frac\left\{1\right\}\left\{ lambda \right\} ight \right]$
* $lambda$ = Intraparticular Péclet number

References

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Van Deemter equation — The Van Deemter equation in chromatography relates the variance per unit length of a separation column to the linear mobile phase velocity by considering physical, kinetic, and thermodynamic properties of a separation.[1] These properties include …   Wikipedia

• Laguerre polynomials — In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 ndash; 1886), are the canonical solutions of Laguerre s equation::x,y + (1 x),y + n,y = 0,which is a second order linear differential equation.This equation has… …   Wikipedia

• Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… …   Wikipedia

• Polynomes orthogonaux — Polynômes orthogonaux Sommaire 1 Introduction 1.1 Exemple : les polynômes de Legendre 2 Propriétés des suites de polynômes orthogonaux 2.1 Re …   Wikipédia en Français

• Polynômes orthogonaux — En mathématiques, une suite de polynômes orthogonaux est une suite infinie de polynômes p0(x), p1(x), p2(x) ... à coefficients réels, dans laquelle chaque pn(x) est de degré n, et telle que les polynômes de la suite sont orthogonaux deux à deux… …   Wikipédia en Français

• List of topics named after Leonhard Euler — In mathematics and physics, there are a large number of topics named in honour of Leonhard Euler (pronounced Oiler ). As well, many of these topics include their own unique function, equation, formula, identity, number (single or sequence), or… …   Wikipedia

• Legendre polynomials — Note: People sometimes refer to the more general associated Legendre polynomials as simply Legendre polynomials . In mathematics, Legendre functions are solutions to Legendre s differential equation::{d over dx} left [ (1 x^2) {d over dx} P n(x)… …   Wikipedia

• Associated Legendre function — Note: This article describes a very general class of functions. An important subclass of these functions mdash;those with integer ell and m mdash;are commonly called associated Legendre polynomials , even though they are not polynomials when m is …   Wikipedia

• Harmonique Sphérique — En mathématiques, les harmoniques sphériques sont des fonctions harmoniques particulières. À titre de rappel, une fonction est dite harmonique lorsque son laplacien est nul. Les harmoniques sphériques sont particulièrement utiles pour résoudre… …   Wikipédia en Français

• Harmonique circulaire — Harmonique sphérique En mathématiques, les harmoniques sphériques sont des fonctions harmoniques particulières. À titre de rappel, une fonction est dite harmonique lorsque son laplacien est nul. Les harmoniques sphériques sont particulièrement… …   Wikipédia en Français