Ganea conjecture

Ganea conjecture

Ganea's conjecture is a claim in algebraic topology, now disproved. It states that: ext{cat}(X imes S^n)= ext{cat}(X) +1, n>0 ,!where cat("X") is the Lusternik–Schnirelmann category of a topological space "X", and "S""n" is the "n" dimensional sphere.

The inequality : ext{cat}(X imes Y) le ext{cat}(X) + ext{cat}(Y) holds for any pair of spaces, "X" and "Y". Furthermore, cat("S""n")=1, for any sphere "S""n", "n">0. Thus, the conjecture amounts to cat("X" × S"n") > cat("X").

The conjecture was formulated by Tudor Ganea in 1971. Many particular cases of this conjecture were proved, till finally Norio Iwase gave a counterexample in 1998. In a follow-up paper from 2002, Iwase gave an even stronger counterexample, with "X" a closed, smooth manifold. This counterexample also disproved a related conjecture, stating that : ext{cat}(M - {p})= ext{cat}(M) -1 , for a closed manifold "M" and "p" a point in "M".

This work raises the question: For which spaces "X" is the Ganea condition, cat("X" × S"n") = cat("X") + 1, satisfied? It has been conjectured that these are precisely the spaces "X" for which cat("X") equals a related invariant, Qcat("X").

References

* Tudor Ganea, "Some problems on numerical homotopy invariants", Lecture Notes in Mathematics, vol. 249, Springer-Verlag, Berlin, 1971, 13--22. MathSciNet| id=0339147
* [http://dx.doi.org/10.1016/0040-9383(91)90006-P] Kathryn Hess, "A proof of Ganea's conjecture for rational spaces", Topology 30 (1991), no. 2, 205--214. MathSciNet| id=1098914
* [http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=19333] Norio Iwase, "Ganea's conjecture on Lusternik-Schnirelmann category", Bulletin of the London Mathematical Society 30 (1998), no. 6, 623--634. MathSciNet| id=1642747
* [http://dx.doi.org/S0040-9383(00)00045-8] Norio Iwase, "A-method in Lusternik-Schnirelmann category", Topology 41 (2002), no. 4, 695--723. MathSciNet| id=1905835
* [http://dx.doi.org/10.1016/S0040-9383(02)00007-1] Lucile Vandembroucq, "Fibrewise suspension and Lusternik-Schnirelmann category", Topology 41 (2002), no. 6, 1239--1258. MathSciNet| id=1923222


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Eilenberg-Ganea conjecture — The Eilenberg Ganea conjecture is a claim in algebraic topology. It was formulated by Samuel Eilenberg and Tudor Ganea in 1957, in a short, but influential paper. It states that if a group G has cohomological dimension 2, then it has a 2… …   Wikipedia

  • Tudor Ganea — (1922 ndash;1971) was a Romanian mathematician, known for his work in algebraic topology, especially homotopy theory. Ganea left Communist Romania to settle in the United States in the early 1960s. He taught at the University of Washington.WorkIn …   Wikipedia

  • Whitehead conjecture — The Whitehead conjecture is a claim in algebraic topology. It was formulated by J. H. C. Whitehead in 1941. It states that every connected subcomplex of a two dimensional aspherical CW complex is aspherical.In 1997, Mladen Bestvina and Noel Brady …   Wikipedia

  • Liste de conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, non exhaustive. Elles sont divisées en quatre sections, en accord avec leur état en 2011. Voir aussi : Conjecture d Erdős (en), qui liste des conjectures de Paul Erdős et de ses… …   Wikipédia en Français

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

  • Liste Des Conjectures Mathématiques — Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les conjectures de Paul… …   Wikipédia en Français

  • Liste des conjectures — mathématiques Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les… …   Wikipédia en Français

  • Liste des conjectures mathematiques — Liste des conjectures mathématiques Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős,… …   Wikipédia en Français

  • Liste des conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les conjectures de Paul… …   Wikipédia en Français

  • Lyusternik–Schnirelmann category — In mathematics, the Lyusternik–Schnirelmann category (or, Lusternik–Schnirelmann category, LS category, or simply, category) of a topological space X is the topological invariant defined as the smallest cardinality of an open covering of X by… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”