Schur–Zassenhaus theorem

Schur–Zassenhaus theorem

The Schur–Zassenhaus theorem is a theorem in group theory which states that if G is a finite group, and N is a normal subgroup whose order is coprime to the order of the quotient group G/N, then G is a semidirect product of N and G/N.

An alternative statement of the theorem is that any normal Hall subgroup of a finite group G has a complement in G.

It is clear that if we do not impose the coprime condition, the theorem is not true: consider for example the cyclic group C_4 and its normal subgroup C_2. Then if C_4 were a semidirect product of C_2 and C_4 / C_2 cong C_2 then C_4 would have to contain two elements of order 2, but it only contains one.

The Schur–Zassenhaus theorem at least partially answers the question: "In a composition series, how can we classify groups with a certain set of composition factors?" The other part, which is where the composition factors do not have coprime orders, is tackled in extension theory.

References

*cite book | author=Rotman, Joseph J. | title=An Introduction to the Theory of Groups | location=New York | publisher=Springer–Verlag | year=1995 | id=ISBN 978-0-387-94285-8

*cite book | author=David S. Dummit & Richard M. Foote | title=Abstract Algebra | publisher=Wiley | year=2003 | id=ISBN 978-0-471-43334-7

* J. S. Milne (2003). [http://www.jmilne.org/math/CourseNotes/math594g.html Group Theory] . Lecture notes.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Satz von Schur-Zassenhaus — Der Satz von Schur Zassenhaus ist ein mathematischer Satz in der Gruppentheorie. Der nach Issai Schur und Hans Julius Zassenhaus benannte Satz lautet[1]: Für eine endliche Gruppe G und einen Normalteiler mit existiert eine Untergruppe mit …   Deutsch Wikipedia

  • Hans Julius Zassenhaus — (28 May 1912 ndash;21 November 1991) was a German mathematician, known for work in many parts of abstract algebra, and as a pioneer of computer algebra.He was born in Koblenz ndash;Moselweiss, and became a student and then assistant of Emil Artin …   Wikipedia

  • Hans Julius Zassenhaus — (* 28. Mai 1912 in Koblenz; † 21. November 1991 in Columbus, Ohio) war ein deutscher Mathematiker, berühmt durch Arbeiten zur Algebra und als Pionier …   Deutsch Wikipedia

  • History of group theory — The history of group theory, a mathematical domain studying groups in their various forms, has evolved in various parallel threads. There are three historical roots of group theory: the theory of algebraic equations, number theory and geometry.… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Frobenius group — In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non trivial elementfixes more than one point and some non trivial element fixes a point. They are named after F. G. Frobenius. Structure The… …   Wikipedia

  • Liste mathematischer Sätze — Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Satz von Abel Ruffini: eine allgemeine Polynomgleichung vom …   Deutsch Wikipedia

  • List of group theory topics — Contents 1 Structures and operations 2 Basic properties of groups 2.1 Group homomorphisms 3 Basic types of groups …   Wikipedia

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”