Koszul algebra

Koszul algebra

In abstract algebra, a Koszul algebra R is a graded k-algebra over which the residue field k has a linear minimal graded free resolution, "i.e.", there exists an exact sequence: :cdots ightarrow R(-i)^{b_i} ightarrow cdots ightarrow R(-2)^{b_2} ightarrow R(-1)^{b_1} ightarrow R ightarrow k ightarrow 0.It is named after the French mathematician Jean-Louis Koszul.

We can choose bases for the free modules in the resolution; then the maps can be written as matrices. For a Koszul algebra, the entries in the matrices are zero or linear forms.

An example of a Koszul algebra is a polynomial ring over a field, for which the Koszul complex is the minimal graded free resolution of the residue field. There are Koszul algebras whose residue fields have infinite minimal graded free resolutions, "e.g", R = k [x,y] /(xy)

References

* R. Froberg, " [http://www.ime.usp.br/~enmarcos/Cursos/homologica/koszulalgfroberg.pdf Koszul Algebras] ", In: Advances in Commutative Ring Theory. Proceedings of the 3rd International Conference, Fez, Lect. Notes Pure Appl. Math. 205, Marcel Dekker, New York, 1999, pp.337--350.
* A. Beilinson, V. Ginzburg, W. Soergel, " [http://www.ams.org.proxy.uchicago.edu/jams/1996-9-02/S0894-0347-96-00192-0/S0894-0347-96-00192-0.pdf Koszul duality patterns in representation theory] ", "J. Amer. Math. Soc." 9 (1996) 473--527.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Koszul complex — In mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra.IntroductionIn… …   Wikipedia

  • Koszul — Jean Louis Koszul (* 3. Januar 1921 in Straßburg) ist ein französischer Mathematiker, der sich mit Algebra und Differentialgeometrie beschäftigt. Koszul ging in Straßburg, wo sein Vater André Koszul Professor an der Universität war, zur Schule… …   Deutsch Wikipedia

  • Koszul-Tate resolution — In mathematics, a Koszul Tate resolution or Koszul Tate complex is a projective resolution of R / M that is an R algebra (where R is a commutative ring and M is an ideal). They were introduced by John Tate and have been used to calculate BRST… …   Wikipedia

  • Jean-Louis Koszul — Naissance 3 janvier 1921 Strasbourg (France) Nationalité  France Champs Mathématicien …   Wikipédia en Français

  • Jean-Louis Koszul — (born January 3, 1921 in Strasbourg, France) is a mathematician best known for studying geometry and discovering the Koszul complex. He was educated at the Lycée Fustel de Coulanges in Strasbourg before studying at the Faculty of Science in… …   Wikipedia

  • Jean-Louis Koszul — (* 3. Januar 1921 in Straßburg) ist ein französischer Mathematiker, der sich mit Algebra und Differentialgeometrie beschäftigt. Koszul ging in Straßburg, wo sein Vater André Koszul Professor an der Universität war, zur Schule und begann dort sein …   Deutsch Wikipedia

  • Differential graded algebra — In mathematics, in particular abstract algebra and topology, a differential graded algebra is a graded algebra with an added chain complex structure that respects the algebra structure. Contents 1 Definition 2 Examples of DGAs 3 Other facts about …   Wikipedia

  • Exterior algebra — In mathematics, the exterior product or wedge product of vectors is an algebraic construction generalizing certain features of the cross product to higher dimensions. Like the cross product, and the scalar triple product, the exterior product of… …   Wikipedia

  • Lie algebra cohomology — In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was defined by Chevalley and Eilenberg (1948) in order to give an algebraic construction of the cohomology of the underlying topological spaces of compact Lie …   Wikipedia

  • List of commutative algebra topics — Commutative algebra is the branch of abstract algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”