Shift matrix

Shift matrix

In mathematics, a shift matrix is a binary matrix with ones only on the superdiagonal or subdiagonal, and zeroes elsewhere. A shift matrix "U" with ones on the superdiagonal is an upper shift matrix.The alternative subdiagonal matrix "L" is unsurprisingly known as a lower shift matrix. The "(i,j)":th component of "U" and "L" are: U_{ij} = delta_{i+1,j}, quad L_{ij} = delta_{i,j+1},where delta_{ij} is the Kronecker delta symbol.

For example, the "5×5" shift matrices are::U_5=egin{pmatrix}0 & 1 & 0 & 0 & 0 \0 & 0 & 1 & 0 & 0 \0 & 0 & 0 & 1 & 0 \0 & 0 & 0 & 0 & 1 \0 & 0 & 0 & 0 & 0end{pmatrix} quadL_5=egin{pmatrix}0 & 0 & 0 & 0 & 0 \1 & 0 & 0 & 0 & 0 \0 & 1 & 0 & 0 & 0 \0 & 0 & 1 & 0 & 0 \0 & 0 & 0 & 1 & 0end{pmatrix}.

Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa.

Premultiplying a matrix "A" by a lower shift matrix results in the elements of "A" being shifted downward by one position, with zeroes appearing in the top row. Postmultiplication by a lower shift matrix results in a shift left.Similar operations involving an upper shift matrix result in the opposite shift.

Clearly all shift matrices are nilpotent; an "n" by "n" shift matrix "S" becomes the null matrix when raised to the power of its dimension "n".

Properties

Let "L" and "U" be the "n" by "n" lower and upper shift matrices, respectively. The following properties hold for both "U" and "L".Let us therefore only list the properties for "U":
* det("U") = 0
* trace("U") = 0
* rank("U") = "n"−1
* The characteristic polynomials of "U" is:p_U(lambda) = (-1)^nlambda^n.
* "U""n" = 0. This follows from the previous property by the Cayley–Hamilton theorem.

* The permanent of "U" is "0".

The following properties show how "U" and "L" are related:
* "L"T = "U"; "U"T = L

*The null spaces of "U" and "L" are: N(U) = operatorname{span}{ (1,0,ldots, 0)^T }, : N(L) = operatorname{span}{ (0,ldots, 0, 1)^T }.
* The spectrum of "U" and "L" is {0}. The algebraic multiplicity of "0" is "n", and its geometric multiplicity is "1". From the expressions for the null spaces, it follows that (up to a scaling) the only eigenvector for "U" is (1,0,ldots, 0)^T, and the only eigenvector for "L" is (0,ldots, 0,1)^T.

* For "LU" and "UL" we have:UL = I - operatorname{diag}(0,ldots, 0,1),:LU = I - operatorname{diag}(1,0,ldots, 0).:These matrices are both idempotent, symmetric, and have the same rank as "U" and "L"

* "L""n-a""U""n-a" + "L""a""U""a" = "U""n-a""L""n-a" + "U""a""L""a" = "I" (the identity matrix), for any integer "a" between 0 and "n" inclusive.

Examples

::S=egin{pmatrix}0 & 0 & 0 & 0 & 0 \1 & 0 & 0 & 0 & 0 \0 & 1 & 0 & 0 & 0 \0 & 0 & 1 & 0 & 0 \0 & 0 & 0 & 1 & 0end{pmatrix}; quad A=egin{pmatrix}1 & 1 & 1 & 1 & 1 \1 & 2 & 2 & 2 & 1 \1 & 2 & 3 & 2 & 1 \1 & 2 & 2 & 2 & 1 \1 & 1 & 1 & 1 & 1end{pmatrix}.

Then SA=egin{pmatrix}0 & 0 & 0 & 0 & 0 \1 & 1 & 1 & 1 & 1 \1 & 2 & 2 & 2 & 1 \1 & 2 & 3 & 2 & 1 \1 & 2 & 2 & 2 & 1end{pmatrix}; quad AS=egin{pmatrix}1 & 1 & 1 & 1 & 0 \2 & 2 & 2 & 1 & 0 \2 & 3 & 2 & 1 & 0 \2 & 2 & 2 & 1 & 0 \1 & 1 & 1 & 1 & 0end{pmatrix}.

Clearly there are many possible permutations. For example, S^{T}AS is equal to the matrix "A" shifted up and left along the main diagonal.

:::::S^{T}AS=egin{pmatrix}2 & 2 & 2 & 1 & 0 \2 & 3 & 2 & 1 & 0 \2 & 2 & 2 & 1 & 0 \1 & 1 & 1 & 1 & 0 \0 & 0 & 0 & 0 & 0end{pmatrix}.

ee also

* Nilpotent matrix

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Matrix decoder — is an audio technology where a finite number of discrete audio channels (e.g., 2) are decoded into a larger number of channels on play back (e.g., 5). The channels are generally, but not always, arranged for transmission or recording by an… …   Wikipedia

  • Shift-And — Der Baeza Yates Gonnet Algorithmus bzw. Shift or Algorithmus, der auch unter dem Namen Shift and bekannt ist, löst das String Matching Problem indem er einen nichtdeterministischen Automaten simuliert. Unter anderem wird eine Abwandlung dieses… …   Deutsch Wikipedia

  • Shift-And-Algorithmus — Der Baeza Yates Gonnet Algorithmus bzw. Shift or Algorithmus, der auch unter dem Namen Shift and bekannt ist, löst das String Matching Problem indem er einen nichtdeterministischen Automaten simuliert. Unter anderem wird eine Abwandlung dieses… …   Deutsch Wikipedia

  • Shift-Or — Der Baeza Yates Gonnet Algorithmus bzw. Shift or Algorithmus, der auch unter dem Namen Shift and bekannt ist, löst das String Matching Problem indem er einen nichtdeterministischen Automaten simuliert. Unter anderem wird eine Abwandlung dieses… …   Deutsch Wikipedia

  • Shift-Or-Algorithmus — Der Baeza Yates Gonnet Algorithmus bzw. Shift or Algorithmus, der auch unter dem Namen Shift and bekannt ist, löst das String Matching Problem indem er einen nichtdeterministischen Automaten simuliert. Unter anderem wird eine Abwandlung dieses… …   Deutsch Wikipedia

  • Matrix mechanics — Quantum mechanics Uncertainty principle …   Wikipedia

  • Nilpotent matrix — In linear algebra, a nilpotent matrix is a square matrix N such that for some positive integer k. The smallest such k is sometimes called the degree of N. More generally, a nilpotent transformation is a linear transformation L of a vector space… …   Wikipedia

  • Pascal matrix — In mathematics, particularly matrix theory and combinatorics, the Pascal matrix is an infinite matrix containing the binomial coefficients as its elements. There are 3 ways this can be achieved either as an upper triangular matrix, a lower… …   Wikipedia

  • Down-shift operator — In mathematics, a down shift operator is a binary matrix with ones only on the superdiagonal or subdiagonal, and zeroes elsewhere. See also Shift matrix This algebra related article is a stub. You can help Wikipedia by expanding it …   Wikipedia

  • Hadamard matrix — In mathematics, a Hadamard matrix is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. This means that every two different rows in a Hadamard matrix represent two perpendicular vectors. Such matrices can… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”