- Apartness relation
In constructive mathematics, an apartness relation is a constructive form of inequality, and is often taken to be more basic than equality. It is often written as to distinguish from the so-called "denial inequality", , which is weaker.
An apartness relation is a
symmetric irreflexive binary relation with the additional condition that if two elements are apart, then any other element is apart from one of them (this last property is often called "co-transitivity"). That is, a binary relation is an apartness relation if it satifies:
#
#
#The
negation of an apartness relation is anequivalence relation , as the above three conditions become reflexivity, symmetry, andtransitivity . If this equivalence relation is in fact equality, then the apartness relation is called "tight". That is, is a tight apartness relation if it additionally satisfies::4.
In classical mathematics, therefore, it also follows that the negation of an equivalence relation is an apartness relation, and the negation of equality is a tight apartness relation. So in that domain, the concept is not useful. In constructive mathematics, however, this is not the case.
The prototypical apartness relation is that of the real numbers: two real numbers are said to be apart if there exists (one can construct) a
rational number between them. In other words, real numbers "x" and "y" are apart if there exists a rational number "z" such that "x" < "z" < "y" or "y" < "z" < "x". The natural apartness relation of the real numbers is then the disjunction of its naturalpseudo-order . Thecomplex numbers , realvector spaces , and indeed anymetric space then naturally inherit the apartness relation of the real numbers, even though they do not come equipped with any natural ordering.If there is no rational number between two real numbers, then the two real numbers are equal. Classically, then, if two real numbers are not equal, one would conclude that there exists a rational number between them. However it does not follow that one can actually construct such a number. Thus to say two real numbers are apart is a stronger statement, constructively, than to say that they are not equal, and while equality of real numbers is definable in terms of their apartness, the apartness of real numbers cannot be defined in terms of their equality. For this reason, in
constructive topology especially, the apartness relation over a set is often taken as primitive, and equality is a defined relation.
Wikimedia Foundation. 2010.