Continuous functional calculus

Continuous functional calculus

In mathematics, the continuous functional calculus of operator theory and C*-algebra theory allows applications of continuous functions to normal elements of a C*-algebra. More precisely,

Theorem. Let x be a normal element of a C*-algebra A with an identity element 1; then there is a unique mapping π : ff(x) defined for f a continuous function on the spectrum Sp(x) of x such that π is a unit-preserving morphism of C*-algebras such that π(1) = 1 and π(ι) = x, where ι denotes the function zz on Sp(x).

The proof of this fact is almost immediate from the Gelfand representation: it suffices to assume A is the C*-algebra of continuous functions on some compact space X and define

 \pi(f) = f \circ x.

Uniqueness follows from application of the Stone-Weierstrass theorem.

In particular, this implies that bounded self-adjoint operators on a Hilbert space have a continuous functional calculus.

For the case of self-adjoint operators on a Hilbert space of more interest is the Borel functional calculus.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Functional calculus — In mathematics, a functional calculus is a theory allowing one to apply mathematical functions to mathematical operators. The term was also used previously to refer to the calculus of variations. If f is a function, say a numerical function of a… …   Wikipedia

  • Borel functional calculus — In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectrum), which has particularly broad… …   Wikipedia

  • Holomorphic functional calculus — In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function fnof; of a complex argument z and an operator T , the aim is to construct an operator:f(T),which in a… …   Wikipedia

  • Decomposition of spectrum (functional analysis) — In mathematics, especially functional analysis, the spectrum of an operator generalizes the notion of eigenvalues. Given an operator, it is sometimes useful to break up the spectrum into various parts. This article discusses a few examples of… …   Wikipedia

  • Calculus of variations — is a field of mathematics that deals with extremizing functionals, as opposed to ordinary calculus which deals with functions. A functional is usually a mapping from a set of functions to the real numbers. Functionals are often formed as definite …   Wikipedia

  • List of functional analysis topics — This is a list of functional analysis topics, by Wikipedia page. Contents 1 Hilbert space 2 Functional analysis, classic results 3 Operator theory 4 Banach space examples …   Wikipedia

  • Continuous function — Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation Taylor s theorem Related rates …   Wikipedia

  • Functional derivative — In mathematics and theoretical physics, the functional derivative is a generalization of the directional derivative. The difference is that the latter differentiates in the direction of a vector, while the former differentiates in the direction… …   Wikipedia

  • Functional analysis — For functional analysis as used in psychology, see the functional analysis (psychology) article. Functional analysis is the branch of mathematics, and specifically of analysis, concerned with the study of vector spaces and operators acting upon… …   Wikipedia

  • Functional integration — You may also be looking for functional integration (neurobiology) or functional integration (sociology). Functional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”