Cheeger constant (graph theory)

Cheeger constant (graph theory)

In mathematics, the Cheeger constant (also Cheeger number or isoperimetric number) of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers, card shuffling, and low-dimensional topology (in particular, the study of hyperbolic 3-manifolds).

The Cheeger constant is named after the mathematician Jeff Cheeger.

Contents

Definition

Let G be an undirected graph with vertex set V(G) and edge set E(G). For a collection of vertices A \subseteq V(G), let \partial A denote the collection of all edges going from a vertex in A to a vertex outside of A:

\partial A := \{ (x, y) \in E | x \in A, y \in V(G) \setminus A \}.

(Remember that edges are unordered, so the edge (x,y) is the same as the edge (y,x).) Then the Cheeger constant of G, denoted h(G), is defined by

h(G) := \min \left\{ \left. \frac{| \partial A |}{| A |} \right| A \subseteq V(G), 0 < | A | \leq \frac{| V(G) |}{2} \right\}.

The Cheeger constant is strictly positive if and only if G is a connected graph. Intuitively, if the Cheeger constant is small but positive, then there exists a "bottleneck", in the sense that there are two "large" sets of vertices with "few" links (edges) between them. The Cheeger constant is "large" if any possible division of the vertex set into two subsets has "many" links between those two subsets.

Example: computer networking

Ring network layout

In applications to theoretical computer science, one wishes to devise network configurations for which the Cheeger constant is high (at least, bounded away from zero) even when |V(G)| (the number of computers in the network) is large.

For example, consider a ring network of N ≥ 3 computers, thought of as a graph GN. Number the computers 1, 2, ..., N clockwise around the ring. Mathematically, the vertex set is

V(G_{N}) := \{ 1, 2, \dots, N \}

and the edge set is

E(G_{N}) := \{ (1, 2), (2, 3), \dots, (N - 1, N), (N, 1) \}.

Take A to be a collection of \lfloor N / 2 \rfloor of these computers in a connected chain:

A := \{ 1, 2, \dots, \lfloor N / 2 \rfloor \}.

Clearly,

\partial A = \{ (\lfloor N / 2 \rfloor, \lfloor N / 2 \rfloor + 1), (N, 1) \},

so

\frac{| \partial A |}{| A |} = \frac{2}{\lfloor N / 2 \rfloor} \to 0 \mbox{ as } N \to \infty.

This example provides an upper bound for the Cheeger constant h(GN), which also tends to zero as N tends to infinity. Consequently, we would regard a ring network as highly "bottlenecked" for large N, and this is highly undesirable in practical terms. We would only need one of the computers on the ring to fail, and network performance would be greatly reduced. If two non-adjacent computers were to fail, the network would split into two disconnected components.

Cheeger Inequalities

The Cheeger constant is especially important in the context of expander graphs as it is a way to measure the edge expansion of a graph. The so-called Cheeger inequalities relate the Eigenvalue gap of a graph with its Cheeger constant.

See also

References

  • Donetti, L., Neri, F., and Muñoz, M. (2006). "Optimal network topologies: expanders, cages, Ramanujan graphs, entangled networks and all that". J. Stat. Mech. 2006 (08): P08007. doi:10.1088/1742-5468/2006/08/P08007. 
  • Lackenby, M. (2006). "Heegaard splittings, the virtually Haken conjecture and property (τ)". Invent. Math. 164 (2): 317–359. doi:10.1007/s00222-005-0480-x. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Cheeger constant — This article discusses the Cheeger isoperimetric constant and Cheeger s inequality in Riemannian geometry. For a different use, see Cheeger constant (graph theory). In Riemannian geometry, the Cheeger isoperimetric constant of a compact… …   Wikipedia

  • Connectivity (graph theory) — In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) which need to be removed to disconnect the remaining nodes from each other[1]. It is… …   Wikipedia

  • Jeff Cheeger — Infobox Scientist name = Jeff Cheeger caption = birth date = birth date|1943|12|1|df=y birth place = Brooklyn, U.S. death date = death place = residence = U.S. nationality = American field = Mathematician work institution = New York University… …   Wikipedia

  • Conductance (graph) — For other uses, see Conductance. In graph theory the conductance of a graph G=(V,E) measures how well knit the graph is: it controls how fast a random walk on G converges to a uniform distribution. The conductance of a graph is often called the… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Expander graph — In combinatorics, an expander graph is a sparse graph which has high connectivity properties, quantified using vertex or edge expansion as described below. Expander constructions have spawned research in pure and applied mathematics, with several …   Wikipedia

  • Goulot d'étranglement (informatique) —  Pour l’article homonyme, voir Goulot d étranglement (production).  Un goulot d étranglement est un point d un système limitant les performances globales, et pouvant avoir un effet sur les temps de traitement et de réponse. Les goulots… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”