Wigner D-matrix

Wigner D-matrix

The Wigner D-matrix is a matrix in an irreducible representation of the groups SU(2) and SO(3). The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors.

Definition Wigner D-matrix

Let j_x, j_y, j_z be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics thesethree operators are the components of a vector operator known as "angular momentum". Examplesare the angular momentum of an electronin an atom, electronic spin,and the angular momentumof a rigid rotor. In all cases the three operators satisfy the following commutation relations,: [j_x,j_y] = i j_z,quad [j_z,j_x] = i j_y,quad [j_y,j_z] = i j_x, where "i" is the purely imaginary number and Planck's constant hbar has been put equal to one. The operator: j^2 = j_x^2 + j_y^2 + j_z^2 is a Casimir operator of SU(2) (or SO(3) as the case may be).It may be diagonalized together with j_z (the choice of this operatoris a convention), which commutes with j^2. That is, it can be shown that there is a complete set of kets with: j^2 |jm angle = j(j+1) |jm angle,quad j_z |jm angle = m |jm angle,where j=0, frac{1}{2}, 1, frac{3}{2}, 2, dots and m=-j, -j+1, ldots, j. (For SO(3) the "quantum number" j is integer.)

A rotation operator can be written as: mathcal{R}(alpha,eta,gamma) = e^{-ialpha j_z}e^{-ieta j_y}e^{-igamma j_z},where alpha, ; eta, and gamma; are Euler angles(characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).

The Wigner D-matrix is a square matrix of dimension 2j+1 withgeneral element: D^j_{m'm}(alpha,eta,gamma) equivlangle jm' | mathcal{R}(alpha,eta,gamma)| jm angle = e^{-im'alpha } d^j_{m'm}(eta)e^{-i mgamma}.The matrix with general element :d^j_{m'm}(eta)= langle jm' |e^{-ieta j_y} | jm angle is known as Wigner's (small) d-matrix.

Wigner (small) d-matrix

Wigner [E. P. Wigner, "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931). Translated into English: J. J. Griffin, "Group Theory and its Application to the Quantum Mechanics of Atomic Spectra", Academic Press, New York (1959).] gave the following expression:egin{array}{lcl}d^j_{m'm}(eta) &=& [(j+m')!(j-m')!(j+m)!(j-m)!] ^{1/2}sum_s frac{(-1)^{m'-m+s{(j+m-s)!s!(m'-m+s)!(j-m'-s)!} \&& imes left(cosfrac{eta}{2} ight)^{2j+m-m'-2s}left(sinfrac{eta}{2} ight)^{m'-m+2s}end{array} The sum over "s" is over such values that the factorials are nonnegative.

"Note:" The d-matrix elements defined here are real. In the often-used z-x-z convention of Euler angles, the factor (-1)^{m'-m+s} in this formula is replaced by (-1)^s, i^{m-m'}, causing half of the functions to be purely imaginary. The realness of the d-matrix elements is one of the reasons that the z-y-z convention, used in this article, is usually preferred in quantum mechanical applications.

The d-matrix elements are related to Jacobi polynomials P^{(a,b)}_k(coseta) with nonnegative a, and b,. [L. C. Biedenharn and J. D. Louck, "Angular Momentum in Quantum Physics", Addison-Wesley, Reading, (1981).] Let : k = min(j+m,,j-m,,j+m',,j-m').

:hbox{If}quad k = egin{cases} j+m: &quad a=m'-m;quad lambda=m'-m\ j-m: &quad a=m-m';quad lambda= 0 \ j+m': &quad a=m-m';quad lambda= 0 \ j-m': &quad a=m'-m;quad lambda=m'-m \end{cases}

Then, with b=2j-2k-a,, the relation is

:d^j_{m'm}(eta) = (-1)^{lambda} inom{2j-k}{k+a}^{1/2} inom{k+b}{b}^{-1/2} left(sinfrac{eta}{2} ight)^a left(cosfrac{eta}{2} ight)^b P^{(a,b)}_k(coseta),where a,b ge 0. ,

Properties of Wigner D-matrix

The complex conjugate of the D-matrix satisfies a number of differential propertiesthat can be formulated concisely by introducing the following operators with (x,, y,,z) = (1,,2,,3),:egin{array}{lcl}hat{mathcal{J_1 &=& i left( cos alpha cot eta ,{partial over partial alpha} , + sin alpha ,{partial over partial eta} , - {cos alpha over sin eta} ,{partial over partial gamma} , ight) \hat{mathcal{J_2 &=& i left( sin alpha cot eta ,{partial over partial alpha} , - cos alpha ;{partial over partial eta } , - {sin alpha over sin eta} ,{partial over partial gamma } , ight) \hat{mathcal{J_3 &=& - i ; {partial over partial alpha} ,end{array}which have quantum mechanical meaning: they are space-fixed rigid rotor angular momentum operators.

Further,:egin{array}{lcl}hat{mathcal{P_1 &=& , i left( {cos gamma over sin eta} {partial over partial alpha } - sin gamma {partial over partial eta } - cot eta cos gamma {partial over partial gamma} ight) \hat{mathcal{P_2 &=& , i left( - {sin gamma over sin eta} {partial over partial alpha} - cos gamma {partial over partial eta} + cot eta sin gamma {partial over partial gamma} ight) \hat{mathcal{P_3 &=& - i {partialover partial gamma}, \end{array}which have quantum mechanical meaning: they are body-fixed rigid rotor angular momentum operators.

The operators satisfy the commutation relations:left [mathcal{J}_1, , mathcal{J}_2 ight] = i mathcal{J}_3, qquad hbox{and}qquadleft [mathcal{P}_1, , mathcal{P}_2 ight] = -i mathcal{P}_3 and the corresponding relations with the indices permuted cyclically. The mathcal{P}_i satisfy "anomalous commutation relations" (have a minus sign on the right hand side). The two sets mutually commute,:left [mathcal{P}_i, , mathcal{J}_j ight] = 0,quad i,,j = 1,,2,,3,and the total operators squared are equal,:mathcal{J}^2 equiv mathcal{J}_1^2+ mathcal{J}_2^2 + mathcal{J}_3^2 =mathcal{P}^2 equiv mathcal{P}_1^2+ mathcal{P}_2^2 + mathcal{P}_3^2 .

Their explicit form is,:mathcal{J}^2= mathcal{P}^2 =-frac{1}{sin^2eta} left( frac{partial^2}{partial alpha^2}+frac{partial^2}{partial gamma^2}-2cosetafrac{partial^2}{partialalphapartial gamma} ight)-frac{partial^2}{partial eta^2}-cotetafrac{partial}{partial eta}.

The operators mathcal{J}_i act on the first (row) index of the D-matrix,:mathcal{J}_3 , D^j_{m'm}(alpha,eta,gamma)^* = m' , D^j_{m'm}(alpha,eta,gamma)^* ,and:(mathcal{J}_1 pm i mathcal{J}_2), D^j_{m'm}(alpha,eta,gamma)^* = sqrt{j(j+1)-m'(m'pm 1)} , D^j_{m'pm 1, m}(alpha,eta,gamma)^* .

The operators mathcal{P}_i act on the second (column) index of the D-matrix:mathcal{P}_3 , D^j_{m'm}(alpha,eta,gamma)^* = m , D^j_{m'm}(alpha,eta,gamma)^* ,and because of the anomalous commutation relation the raising/lowering operatorsare defined with reversed signs,:(mathcal{P}_1 mp i mathcal{P}_2), D^j_{m'm}(alpha,eta,gamma)^* = sqrt{j(j+1)-m(mpm 1)} , D^j_{m', mpm1}(alpha,eta,gamma)^* .

Finally,:mathcal{J}^2, D^j_{m'm}(alpha,eta,gamma)^* =mathcal{P}^2, D^j_{m'm}(alpha,eta,gamma)^* = j(j+1) D^j_{m'm}(alpha,eta,gamma)^*.

In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span
irreducible representations of the isomorphic Lie algebra's generated by {mathcal{J}_i} and {-mathcal{P}_i}.

An important property of the Wigner D-matrix follows from the commutation of mathcal{R}(alpha,eta,gamma) with the time reversal operator T,,:langle jm' | mathcal{R}(alpha,eta,gamma)| jm angle =langle jm' | T^{,dagger} mathcal{R}(alpha,eta,gamma) T| jm angle =(-1)^{m'-m} langle j,-m' | mathcal{R}(alpha,eta,gamma)| j,-m angle^*,or:D^j_{m'm}(alpha,eta,gamma) = (-1)^{m'-m} D^j_{-m',-m}(alpha,eta,gamma)^*. Here we used that T, is anti-unitary (hence the complex conjugation after movingT^dagger, from ket to bra), T | jm angle = (-1)^{j-m} | j,-m angle and (-1)^{2j-m'-m} = (-1)^{m'-m}.

Orthogonality relations

The Wigner D-matrix elements D^j_{mk}(alpha,eta,gamma) form a complete setof orthogonal functions of the Euler angles alpha, eta, and gamma:: int_0^{2pi} dalpha int_0^pi sin eta deta int_0^{2pi} dgamma ,, D^{j'}_{m'k'}(alpha,eta,gamma)^ast D^j_{mk}(alpha,eta,gamma) = frac{8pi^2}{2j+1} delta_{m'm}delta_{k'k}delta_{j'j}.

This is a special case of the Schur orthogonality relations.

Relation with spherical harmonic functions

The D-matrix elements with second index equal to zero, are proportionalto spherical harmonics, normalized to unity and with Condon and Shortley phase convention, :D^{ell}_{m 0}(alpha,eta,gamma)^* = sqrt{frac{4pi}{2ell+1 Y_{ell}^m (eta, alpha ) .In the present convention of Euler angles, alpha is a longitudinal angle and eta is a colatitudinal angle (spherical polar anglesin the physical definition of such angles). This is one of the reasons that the "z"-"y"-"z"
convention is used frequently in molecular physics.From the time-reversal property of the Wigner D-matrix follows immediately:left( Y_{ell}^m ight) ^* = (-1)^m Y_{ell}^{-m}.There exists a more general relationship to the spin-weighted spherical harmonics::D^{ell}_{-m s}(alpha,eta,-gamma) =(-1)^m sqrtfrac{4pi}{2{ell}+1} {}_sY_ell}m}(eta,alpha) e^{isgamma}.

Relation with Legendre polynomials

The Wigner small d-matrix elements with both indices set to zero are relatedto Legendre polynomials: d^{ell}_{0,0}(eta) = P_{ell}(coseta).

See also

* Clebsch-Gordan coefficients
* Eugene Paul Wigner

References

Cited references

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Matrix normal distribution — parameters: mean row covariance column covariance. Parameters are matrices (all of them). support: is a matrix …   Wikipedia

  • Wigner quasi-probability distribution — See also Wigner distribution, a disambiguation page. The Wigner quasi probability distribution (also called the Wigner function or the Wigner Ville distribution) is a special type of quasi probability distribution. It was introduced by Eugene… …   Wikipedia

  • Wigner-Eckart theorem — The Wigner Eckart theorem is a theorem of representation theory and quantum mechanics. It states that matrix elements of spherical tensor operators on the basis of angular momentum eigenstates can be expressed as the product of two factors, one… …   Wikipedia

  • Matrix mechanics — Quantum mechanics Uncertainty principle …   Wikipedia

  • Wigner effect — The Wigner effect (named for its discoverer, E. P. Wigner)[1], also known as the discomposition effect, is the displacement of atoms in a solid caused by neutron radiation. Any solid can be affected by the Wigner effect, but the effect is of most …   Wikipedia

  • Wigner semicircle distribution — Probability distribution name =Wigner semicircle type =density pdf | cdf parameters =R>0! radius (real) support =x in [ R;+R] ! pdf =frac2{pi R^2},sqrt{R^2 x^2}! cdf =frac12+frac{xsqrt{R^2 x^2{pi R^2} + frac{arcsin!left(frac{x}{R} ight)}{pi}! for …   Wikipedia

  • Wigner distribution — The Wigner distribution is either of two things:* Wigner semicircle distribution A probability function used in mathematics (Eugene Wigner) * Wigner quasi probability distribution Originally this was a representation of the wave function in… …   Wikipedia

  • Wigner-Eckart — Das Wigner Eckart Theorem (nach Eugene Paul Wigner und Carl Henry Eckart) ist ein Hilfsmittel für die Berechnung der Matrixelemente eines Tensoroperators, wenn dessen Symmetrieeigenschaften bekannt sind. Das Wigner Eckart Theorem darf nicht mit… …   Deutsch Wikipedia

  • Wigner Eckart — Das Wigner Eckart Theorem (nach Eugene Paul Wigner und Carl Henry Eckart) ist ein Hilfsmittel für die Berechnung der Matrixelemente eines Tensoroperators, wenn dessen Symmetrieeigenschaften bekannt sind. Das Wigner Eckart Theorem darf nicht mit… …   Deutsch Wikipedia

  • Eugene Wigner — Infobox Scientist box width = 300px name = E. P. Wigner caption = Eugene Paul Wigner (1902 1995) birth date = birth date|1902|11|17|mf=y birth place = Budapest, Hungary (Austria Hungary) death date = death date and age|1995|1|1|1902|11|17 death… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”