Siegel modular form

Siegel modular form

In mathematics, Siegel modular forms are a major type of automorphic form. These stand in relation to the conventional "elliptic" modular forms as abelian varieties do in relation to elliptic curves; the complex manifolds constructed as in the theory are basic models for what a moduli space for abelian varieties (with some extra level structure) should be, as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.

The modular forms of the theory are holomorphic functions on the set of symmetric "n" × "n" matrices with positive definite imaginary part; the forms must satisfy an automorphy condition. Siegel modular forms can be thought of as multivariable modular forms, i.e. as special functions of several complex variables.

Siegel modular forms were first investigated by Carl Ludwig Siegel in the 1930s for the purpose of studying quadratic forms analytically. These primarily arise in various branches of number theory, such as arithmetic geometry and elliptic cohomology. Siegel modular forms have also been used in some areas of physics, such as conformal field theory.

Definition

Preliminaries

Let g, N in mathbb{N} and define

:mathcal{H}_g=left{ au in M_{g imes g}(mathbb{C}) ig| au^{T}= au, extrm{Im}( au) >0 ight}, the Siegel upper half-space. Define the symplectic group of level N, denoted by

:Gamma_g(N),

as

:Gamma_g(N)=left{ gamma in GL_{2g}(mathbb{Z}) ig| gamma^{T} egin{pmatrix} 0 & I_g \ -I_g & 0 end{pmatrix} gamma= egin{pmatrix} 0 & I_g \ -I_g & 0 end{pmatrix} , gamma equiv I_{2g}mod N ight},

where I_g is the g imes g identity matrix. Finally, let

: ho: extrm{GL}(g,mathbb{C}) ightarrow extrm{GL}(V)

be a rational representation, where V is a finite-dimensional complex vector space.

iegel modular form

Given

:gamma=egin{pmatrix} A & B \ C & D end{pmatrix}

and

:gamma in Gamma_g(N),

define the notation

:(fig|gamma)( au)=( ho(C au+D))^{-1}f(gamma au).

Then a holomorphic function

:f:mathcal{H}_g ightarrow V

is a "Siegel modular form" of degree g, weight ho, and level N if

:(fig|gamma)=f.

In the case that g=1, we further require that f be holomorphic 'at infinity'. This assumption is not necessary for g>1 due to the Koecher principle, explained below. Denote the space of weight ho, degree g, and level N Siegel modular forms by

:M_{ ho}(Gamma_g(N)).

Koecher principle

The theorem known as the "Koecher principle" states that if f is a Siegel modular form of weight ho, level 1, and degree g>1, then f is bounded on subsets of mathcal{H}_g of the form

:left{ au in mathcal{H}_g | extrm{Im}( au) > epsilon I_g ight},

where epsilon>0. Corollary to this theorem is the fact that Siegel modular forms of degree g>1 have Fourier expansions and are thus holomorphic at infinity. [This was proved by Max Koecher, "Zur Theorie der Modulformen n-ten Grades I", Mathematische. Zeitschrift 59 (1954), 455–466. A corresponding principle for Hilbert modular forms was apparently known earlier, after Fritz Gotzky, "Uber eine zahlentheoretische Anwendung von Modulfunktionen zweier Veranderlicher", Math. Ann. 100 (1928), pp. 411-37]

References

*Helmut Klingen. "Introductory Lectures on Siegel Modular Forms", Cambridge University Press (May 21, 2003), ISBN 0-521-35052-2

Notes

External links

* [http://www.citebase.org/fulltext?format=application/pdf&identifier=oai:arXiv.org:math/0605346 Gerard van der Geer, lecture notes on Siegel modular forms (PDF)]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Modular form — In mathematics, a modular form is a (complex) analytic function on the upper half plane satisfying a certain kind of functional equation and growth condition. The theory of modular forms therefore belongs to complex analysis but the main… …   Wikipedia

  • Carl Ludwig Siegel — Infobox Scientist name = Carl Ludwig Siegel image width = 242 x 360 22k caption = Carl Ludwig Siegel birth date = birth date|1896|12|31 birth place = Berlin, Germany death date = death date and age|1981|4|4|1896|12|31 death place = Göttingen,… …   Wikipedia

  • Automorphic form — In mathematics, the general notion of automorphic form is the extension to analytic functions, perhaps of several complex variables, of the theory of modular forms. It is in terms of a Lie group G, to generalise the groups SL2(R) or PSL2 (R) of… …   Wikipedia

  • Carl Siegel — Pour les articles homonymes, voir Siegel. Carl Ludwig Siegel en 1975 Carl Ludwig Siegel (31 décembre  …   Wikipédia en Français

  • Forme modulaire — En mathématiques, une forme modulaire est une fonction analytique sur le demi plan de Poincaré satisfaisant à une certaine sorte d équation fonctionnelle et de condition de croissance. La théorie des formes modulaires par conséquent est dans la… …   Wikipédia en Français

  • Several complex variables — The theory of functions of several complex variables is the branch of mathematics dealing with functions : f ( z1, z2, ..., zn ) on the space C n of n tuples of complex numbers. As in complex analysis, which is the case n = 1 but of a distinct… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Langlands program — The Langlands program is a web of far reaching and influential conjectures that connect number theory and the representation theory of certain groups. It was proposed by Robert Langlands beginning in 1967. Connection with number theory The… …   Wikipedia

  • Programme de Langlands — Pour les articles homonymes, voir Langlands. En mathématiques, le programme de Langlands est encore, au début du XXIe siècle, un domaine de recherche actif et fertile en conjectures. Ce programme souhaite relier la théorie des nombres aux… …   Wikipédia en Français

  • Segal — (and its variants) can refer to the following:Peopleegal*Alan F. Segal, American Professor of Jewish Studies *Brandon Segal, ice hockey player *Dan Segal, a British mathematician *Daniel Scott Segal, also known as Dancing Eagle, drummer for The… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”