Concept mining

Concept mining

Concept mining is an activity that results in the extraction of concepts from artifacts. Solutions to the task typically involve aspects of artificial intelligence and statistics, such as data mining and text mining. Because artifacts are typically a loosely structured sequence of words and other symbols (rather than concepts), the problem is nontrivial, but it can provide powerful insights into the meaning, provenance and similarity of documents.

Contents

Methods

Traditionally, the conversion of words to concepts has been performed using a thesaurus, and for computational techniques the tendency is to do the same. The thesauri used are either specially created for the task, or a pre-existing language model, usually related to Princeton's WordNet.

The mappings of words to concepts are often ambiguous. Typically each word in a given language will relate to several possible concepts. Humans use context to disambiguate the various meanings of a given piece of text, where available. Machine translation systems cannot easily infer context.

For the purposes of concept mining however, these ambiguities tend to be less important than they are with machine translation, for in large documents the ambiguities tend to even out, much as is the case with text mining.

There are many techniques for disambiguation that may be used. Examples are linguistic analysis of the text and the use of word and concept association frequency information that may be inferred from large text corpora. Recently, techniques that base on semantic similarity between the possible concepts and the context have appeared and gained interest in the scientific community.

Applications

Detecting and indexing similar documents in large corpora

One of the spin-offs of calculating document statistics in the concept domain, rather than the word domain, is that concepts form natural tree structures based on hypernymy and meronymy. These structures can be used to produce simple tree membership statistics, that can be used to locate any document in a Euclidean concept space. If the size of a document is also considered as another dimension of this space then an extremely efficient indexing system can be created. This technique is currently in commercial use locating similar legal documents in a 2.5 million document corpus.

Clustering documents by topic

Standard numeric clustering techniques may be used in "concept space" as described above to locate and index documents by the inferred topic. These are numerically far more efficient than their text mining cousins, and tend to behave more intuitively, in that they map better to the similarity measures a human would generate.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Concept Search — A concept search (or conceptual search) is an automated information retrieval method that is used to search electronically stored unstructured text (for example, digital archives, email, scientific literature, etc.) for information that is… …   Wikipedia

  • Concept learning — Concept learning, also known as category learning, concept attainment, and concept formation, is largely based on the works of the cognitive psychologist Jerome Bruner. Bruner, Goodnow, Austin (1967) defined concept attainment (or concept… …   Wikipedia

  • Concept drift — In predictive analytics and machine learning, the concept drift means that the statistical properties of the target variable, which the model is trying to predict, change over time in unforeseen ways. This causes problems because the predictions… …   Wikipedia

  • Mining in Limburg — Coal mining in Limburg, a province of the Netherlands, has taken place since the 16th century. Near the Augustinian Abbey of Rolduc, coal is found very close to the surface. The abbey owned the coal, and beginning in the 16th century hired local… …   Wikipedia

  • Mining rock mass rating — Laubscher developed the Mining Rock Mass Rating (MRMR)[1][2][3][4][5] system by modifying the Rock Mass Rating (RMR) system of Bieniawsk …   Wikipedia

  • Text mining — Text mining, sometimes alternately referred to as text data mining , roughly equivalent to text analytics , refers generally to the process of deriving high quality information from text. High quality information is typically derived through the… …   Wikipedia

  • Data stream mining — is the process of extracting knowledge structures from continuous, rapid data records. A data stream is an ordered sequence of instances that in many applications of data stream mining can be read only once or a small number of times using… …   Wikipedia

  • Glossaire du data mining — Exploration de données Articles principaux Exploration de données Fouille de données spatiales Fouille du web Fouille de flots de données Fouille de textes …   Wikipédia en Français

  • Data mining — Not to be confused with analytics, information extraction, or data analysis. Data mining (the analysis step of the knowledge discovery in databases process,[1] or KDD), a relatively young and interdisciplinary field of computer science[2][3] is… …   Wikipedia

  • Software mining — is a promising application of knowledge discovery in the area of software modernization which involves understanding existing software artifacts. This process is related to a concept of reverse engineering. Usually the knowledge obtained from… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”