Von Neumann conjecture

Von Neumann conjecture

In mathematics, the von Neumann conjecture stated that a topological group "G" is not amenable if and only if "G" contains a subgroup that is a free group on two generators. The conjecture was disproved in 1980.

In the 1920s, during his groundbreaking work on Banach spaces, John von Neumann showed that no amenable group contains a free subgroup of rank 2. The superficial similarity to the Tits alternative for matrix groups invited the suggestion that the converse (that every group that is not amenable contains a free subgroup on two generators) is true. Although von Neumann's name is popularly attached to the conjecture that the converse is true, it does not seem that von Neumann himself believed the converse to be true.Fact|date=January 2008 Rather, this suggestion was made by a number of different authors in the 1950s and 1960s, including in a statement attributed to Mahlon Day in 1957.

The conjecture was shown to be false in 1980 by Ol'shanskii; he demonstrated that the Tarski monster group, which is easily seen not to have a free subgroup of rank 2, is not amenable. Two years later, Adian showed that certain Burnside groups are also counterexamples. None of these counterexamples are finitely presented, and for some years it was considered possible that the conjecture held for finitely presented groups. However, in 2000, Ol'shanskii and Sapir exhibited a collection of finitely-presented groups which do not satisfy the conjecture.

References

* A.Ju. Ol'shanskii, On the question of the existence of an invariant mean on a group (in Russian), "Uspekhi Mat. Nauk" vol. 35 (1980), no. 4, 199-200.
* S.I. Adyan, Random walks on free periodic groups (in Russian), "Izv. Akad. Nauk SSSR, Ser. Mat." vol. 46 (1982), no. 6, 1139-1149, 1343.
* A.Ju. Ol'shanskii and M.V. Sapir, Non-amenable finitely presented torsion-by-cyclic groups, "Publ. Math. Inst. Hautes Études Sci." No. 96, (2002), 43-169.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Von Neumann (disambiguation) — von Neumann may refer to:* von Neumann (crater), a lunar impact crater * von Neumann (surname), a German surnameee also* von Neumann algebra * von Neumann architecture * von Neumann conjecture * von Neumann entropy * von Neumann machine * von… …   Wikipedia

  • John von Neumann — Von Neumann redirects here. For other uses, see Von Neumann (disambiguation). The native form of this personal name is Neumann János. This article uses the Western name order. John von Neumann …   Wikipedia

  • Von Neumann entropy — In quantum statistical mechanics, von Neumann entropy refers to the extension of classical entropy concepts to the field of quantum mechanics.John von Neumann rigorously established the correct mathematical framework for quantum mechanics with… …   Wikipedia

  • Théorème du minimax de von Neumann — John von Neumann Vers où faut il …   Wikipédia en Français

  • List of mathematics articles (V) — NOTOC Vac Vacuous truth Vague topology Valence of average numbers Valentin Vornicu Validity (statistics) Valuation (algebra) Valuation (logic) Valuation (mathematics) Valuation (measure theory) Valuation of options Valuation ring Valuative… …   Wikipedia

  • Liste de conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, non exhaustive. Elles sont divisées en quatre sections, en accord avec leur état en 2011. Voir aussi : Conjecture d Erdős (en), qui liste des conjectures de Paul Erdős et de ses… …   Wikipédia en Français

  • List of functional analysis topics — This is a list of functional analysis topics, by Wikipedia page. Contents 1 Hilbert space 2 Functional analysis, classic results 3 Operator theory 4 Banach space examples …   Wikipedia

  • Amenable group — In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under left (or right) translation by group elements. The original definition, in terms of a… …   Wikipedia

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

  • Liste Des Conjectures Mathématiques — Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les conjectures de Paul… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”