Rotation of axes

Rotation of axes

Rotation of Axes is a form of Euclidean transformation in which the entire xy-coordinate system is rotated in the counter-clockwise direction with respect to the origin (0, 0) through a scalar quantity denoted by θ.

With the exception of the degenerate cases, if a general second-degree equation has a Bxy term, then Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0represents one of the 3 conic sections, namely, the ellipse, hyperbola, and the parabola.

Rotation of loci

If a locus is defined on the xy-coordinate system as left(x, y ight), then it is denoted as left(xcos heta + ysin heta, -xsin heta + ycos heta ight) on the rotated x'y'-coordinate system.Likewise, if a locus is defined on the x'y'-coordinate system as left(x^prime , y^prime ight), then it is denoted as left(x^primecos heta - y^primesin heta, x^primesin heta + y^primecos heta ight) on the "un-rotated" xy-coordinate system.

Elimination of the "xy" term by the rotation formula

For a general, non-degenerate second-degree equation Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, the Bxy term can be removed by rotating the xy-coordinate system by an angle heta, where

cot 2 heta = frac{A - C}{B}.

Derivation of the rotation formula

Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, B e 0.

Now, the equation is rotated by a quantity heta, hence

Aleft(x^primecos heta - y^primesin heta ight)^2 + Bleft(x^primecos heta - y^primesin heta ight)left(x^primesin heta + y^primecos heta ight) + Cleft(x^primesin heta + y^primecos heta ight)^2:: + Dleft(x^primecos heta - y^primesin heta ight) + Eleft(x^primesin heta + y^primecos heta ight) + F = 0

Expanding, the equation becomes

A{x^prime}^2cos ^2 heta - 2Ax^prime y^primesin hetacos heta + Ay^primesin ^2 heta + B{x^prime}^2sin hetacos heta + Bx^prime y^primecos ^2 heta:: - Bx^prime y^primesin ^2 heta - B{y^prime}^2cos ^2 heta + C{x^prime}^2sin ^2 heta + 2Cx^prime y^primesin hetacos heta + C{y^prime}^2cos ^2 heta::: + Dx^primecos heta - Dy^primesin heta + Ex^primesin heta + Ey^primecos heta + F = 0

Collecting like terms,

{x^prime}^2left(Acos ^2 heta + Bsin hetacos heta + Csin ^2 heta ight) + x^prime y^primeleft{Bleft(cos ^2 heta - sin ^2 heta ight) - 2left(A - C ight)left(sin hetacos heta ight) ight}:: + {y^prime}^2left(Asin ^2 heta - Bsin hetacos heta + Ccos ^2 heta ight) + x^primeleft(Dcos heta + Esin heta ight)::: + y^primeleft(-Dsin heta + Ecos heta ight) + F = 0

In order to eliminate the x'y'-term, the coefficient of the x'y'-term must be set equal to 0.

egin{matrix}Bleft(cos ^2 heta - sin ^2 heta ight) - 2left(A - C ight)sin hetacos heta &=& 0 \ \Bcos 2 heta - left(A - C ight)sin 2 heta &=& 0 \ \Bcos 2 heta &=& left(A - C ight)sin 2 heta \ \cos 2 heta &=& frac{left(A - C ight)sin 2 heta}{B} \ \cot 2 heta &=& frac{A - C}{B} end{matrix}

Identifying rotated conic sections according to A. Lenard dubious

A non-degenerate conic section with the equation Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 can be identified by evaluating the value of B^2 - 4AC:

:::egin{cases}mbox{An ellipse or a circle}, mbox{if} B^2 - 4AC < 0 \ mbox{A parabola}, mbox{if} B^2 - 4AC = 0 \ mbox{A hyperbola}, mbox{if} B^2 - 4AC > 0end{cases}

ee also

*Rotation


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • rotation of axes — /ak seez/, Math. a process of replacing the axes in a Cartesian coordinate system with a new set of axes making a specified angle with and having the same origin as the original axes. * * * …   Universalium

  • rotation of axes — /ak seez/, Math. a process of replacing the axes in a Cartesian coordinate system with a new set of axes making a specified angle with and having the same origin as the original axes …   Useful english dictionary

  • Rotation (mathématiques élémentaires) — Rotation plane Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Rotation plane — Pour les articles homonymes, voir Rotation. En géométrie dans le plan, une rotation plane est une transformation qui fait tourner les figures autour d un point et d un certain angle. Cette transformation est une isométrie car les distances sont… …   Wikipédia en Français

  • Rotation (mathematics) — Rotation of an object in two dimensions around a point O. In geometry and linear algebra, a rotation is a transformation in a plane or in space that describes the motion of a rigid body around a fixed point. A rotation is different from a… …   Wikipedia

  • Rotation matrix — In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian… …   Wikipedia

  • Rotation representation (mathematics) — In geometry a rotation representation expresses the orientation of an object (or coordinate frame) relative to a coordinate reference frame. This concept extends to classical mechanics where rotational (or angular) kinematics is the science of… …   Wikipedia

  • Rotation — This article is about movement of a physical body. For other uses, see Rotation (disambiguation). A polyhedron resembling a sphere rotating around an axis. A rotation is a circular movement of an object around a center (or point) of rotation. A… …   Wikipedia

  • Rotation group — This article is about rotations in three dimensional Euclidean space. For rotations in four dimensional Euclidean space, see SO(4). For rotations in higher dimensions, see orthogonal group. In mechanics and geometry, the rotation group is the… …   Wikipedia

  • Rotation around a fixed axis — Rotational motion can occur around more than one axis at once, and can involve phenomena such as wobbling and precession. Rotation around a fixed axis is a special case of rotational motion, which does not involve those phenomena. The kinematics… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”