- Aerodynamic levitation
Aerodynamic
levitation is the use of gas pressure to levitate materials so that they are no longer in physical contact with any container. In scientific experiments this removes contamination and nucleation issues associated with physical contact with a container.Overview
The term aerodynamic levitation could be applied to many objects that use gas pressure to counter the force of
gravity , and allow stablelevitation . Helicopters and air hockey pucks are two good examples of objects that are aerodynamically levitated. However, more recently this term has also been associated with a scientific technique which uses a cone-shaped nozzle allowing stable levitation of 1-3mm diameter spherical samples without the need for active control mechanisms [http://www.iupac.org/publications/pac/2000/7211/7211nordine_2127.html] .Aerodynamic levitation as a scientific tool
These systems allow spherical samples to be levitated by passing gas up through a diverging conical nozzle. Combining this with >200W continuous
CO2 laser heating allows sample temperatures in excess of 3000 degrees Celsius to be achieved.When heating materials to these extremely high temperatures levitation in general provides two key advantages over traditional furnaces. First, contamination that would otherwise occur from a solid container is eliminated. Second, the sample can be undercooled, i.e. cooled below it’s normal freezing temperature, without actually freezing.
Undercooling of liquid samples
Undercooling or
supercooling , is the cooling of a liquid below it’s equilibrium freezing temperature, whilst remaining liquid. This can occur wherever crystalnucleation is suppressed. In levitated samples heterogeneous nucleation is suppressed due to the lack of contact with a solid surface. Levitation techniques typically allow samples to be cooled several hundred degrees Celsius below their equilibrium freezing temperature.Glass produced by Aerodynamic Levitation
Since crystal nucleation is suppressed by levitation, and since it is not limited by sample conductivity (unlike electromagnetic levitation), aerodynamic levitation can be used to make glassy materials that cannot be made by any other method. Several silica-free, aluminium oxide based glasses have been made [http://jjap.ipap.jp/link?JJAP/41/3029/] [http://www.blackwell-synergy.com/doi/abs/10.1111/j.1151-2916.2000.tb01483.x] [http://www.iop.org/EJ/abstract/0953-8984/18/32/L01/] .
Physical Property Measurements
In the last few years a range of
in situ measurement techniques have also been developed. The following measurements can be made with varying precision:electrical conductivity ,viscosity ,density ,surface tension ,specific heat capacity ,In situ aerodynamic levitation has also been combined with:
X-ray
synchrotron radiation ,neutron scattering ,NMR spectroscopy ee also
*
Magnetic levitation
*Electrostatic levitation
*Optical levitation
*Acoustic levitation
Wikimedia Foundation. 2010.