Richardson extrapolation

Richardson extrapolation

In numerical analysis, Richardson extrapolation is a sequence acceleration method, used to improve the rate of convergence of a sequence. It is named after Lewis Fry Richardson, who introduced the technique in the early 20th century. [cite journal | last=Richardson | first=L. F. | authorlink=Lewis Fry Richardson | title=The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam | journal=Philosophical Transactions of the Royal Society of London, Series A | year=1910 | volume=210 | pages=307–357] [cite journal | last=Richardson | first=L. F. | authorlink=Lewis Fry Richardson | title=The deferred approach to the limit | journal=Philosophical Transactions of the Royal Society of London, Series A | year=1927 | volume=226 | pages=299–349 | doi=10.1098/rsta.1927.0008] In the words of Birkhoff and Rota, "... its usefulness for practical computations can hardly be overestimated." [Page 126 of cite book | last=Birkhoff | first=Garrett | authorlink=Garrett Birkhoff | coauthors=Gian-Carlo Rota | title=Ordinary differential equations | publisher=John Wiley and sons | year=1978 | edition=3rd edition | isbn=047107411X | oclc= 4379402]

Example of Richardson extrapolation

Suppose that "A"("h") is an estimation of order "hn" forA=lim_{h o 0}A(h), i.e. A-A(h) = a_n h^n+O(h^m),~a_n e0,~m>n. Then:R(h) = A(h/2) + frac{A(h/2)-A(h)}{2^n-1} = frac{2^n,A(h/2)-A(h)}{2^n-1} is called the Richardson extrapolate of "A"("h");it is an estimate of order "hm" for "A", with "m>n".

More generally, the factor 2 can be replaced by any other factor, as shown below.

Very often, it is much easier to obtain a given precision by using "R(h)" ratherthan "A(h')" with a much smaller " h' ", which can cause problems due to limited precision (rounding errors) and/or due to the increasing number of calculations needed (see examples below).

General formula

Let "A"("h") be an approximation of "A" that depends on a positive step size "h" with an error formula of the form : A - A(h) = a_0h^{k_0} + a_1h^{k_1} + a_2h^{k_2} + cdots where the "ai" are unknown constants and the "ki" are known constants such that "hki" > "hki+1".

The exact value sought can be given by: A = A(h) + a_0h^{k_0} + a_1h^{k_1} + a_2h^{k_2} + cdots which can be simplified with Big O notation to be: A = A(h)+ a_0h^{k_0} + O(h^{k_1}). ,!

Using the step sizes "h" and "h / t" for some "t", the two formulas for "A" are:: A = A(h)+ a_0h^{k_0} + O(h^{k_1}) ,!: A = A!left(frac{h}{t} ight) + a_0left(frac{h}{t} ight)^{k_0} + O(h^{k_1}) .

Multiplying the second equation by "t""k"0 and subtracting the first equation gives: (t^{k_0}-1)A = t^{k_0}Aleft(frac{h}{t} ight) - A(h) + O(h^{k_1}) which can be solved for "A" to give:A = frac{t^{k_0}Aleft(frac{h}{t} ight) - A(h)}{t^{k_0}-1} + O(h^{k_1}) .

By this process, we have achieved a better approximation of "A" by subtracting the largest term in the error which was "O"("h""k"0). This process can be repeated to remove more error terms to get even better approximations.

A general recurrence relation can be defined for the approximations by: A_{i+1}(h) = frac{t^{k_i}A_ileft(frac{h}{t} ight) - A_i(h)}{t^{k_i}-1} such that : A = A_{i+1}(h) + O(h^{k_{i+1) with A_0=A(h).

A well-known practical use of Richardson extrapolation is Romberg integration, which applies Richardson extrapolation to the trapezium rule.

It should be noted that the Richardson extrapolation can be considered as a linear sequence transformation.

Example

Using Taylor's theorem,:f(x+h) = f(x) + f'(x)h + frac{f"(x)}{2}h^2 + cdotsthe derivative of "f"("x") is given by:f'(x) = frac{f(x+h) - f(x)}{h} - frac{f"(x)}{2}h + cdots.

If the initial approximations of the derivative are chosen to be:A_0(h) = frac{f(x+h) - f(x)}{h}then "ki" = "i"+1.

For "t" = 2, the first formula extrapolated for "A" would be:A = 2A_0!left(frac{h}{2} ight) - A_0(h) + O(h^2) .

For the new approximation :A_1(h) = 2A_0!left(frac{h}{2} ight) - A_0(h) we can extrapolate again to obtain: A = frac{4A_1!left(frac{h}{2} ight) - A_1(h)}{3} + O(h^3) .

ee also

* Aitken's delta-squared process

References

*"Extrapolation Methods. Theory and Practice" by C. Brezinski and M. Redivo Zaglia, North-Holland, 1991.

External links

* [http://math.fullerton.edu/mathews/n2003/RichardsonExtrapMod.html Module for Richardson's Extrapolation] , fullerton.edu
* [http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-304Spring-2006/D69D4111-2100-443D-A75D-5D5BE7B4FAA2/0/xtrpltn_liu_xpnd.pdf Fundamental Methods of Numerical Extrapolation With Applications] , mit.edu
* [http://www.math.ubc.ca/~feldman/m256/richard.pdf Richardson-Extrapolation]
* [http://www.math.ubc.ca/~israel/m215/rich/rich.html Richardson extrapolation on a website of Robert Israel (Unversity of British Columbia) ]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Richardson-Extrapolation — Das Verfahren der Richardson Extrapolation wurde von Lewis Fry Richardson (1881–1953) entwickelt. Es kann angewendet werden, wenn man bei der numerischen Lösung eines Problems aufgrund zweier verschiedener Diskretisierungen (mit den Schrittweiten …   Deutsch Wikipedia

  • Extrapolation — In mathematics, extrapolation is the process of constructing new data points outside a discrete set of known data points. It is similar to the process of interpolation, which constructs new points between known points, but the results of… …   Wikipedia

  • Extrapolation — Unter Extrapolation wird die Bestimmung eines (oft mathematischen) Verhaltens über den gesicherten Bereich hinaus verstanden. Eine statistische Extrapolation bezeichnet man auch als Hochrechnung. Eine andere Herangehensweise ist die Interpolation …   Deutsch Wikipedia

  • Extrapolation De Richardson — En analyse numérique, le procédé d extrapolation de Richardson est une technique d accélération de la convergence. Il est ainsi dénommé en l honneur de Lewis Fry Richardson, qui l a introduit au début du XXe siècle. Ce procédé est notamment… …   Wikipédia en Français

  • Extrapolation de richardson — En analyse numérique, le procédé d extrapolation de Richardson est une technique d accélération de la convergence. Il est ainsi dénommé en l honneur de Lewis Fry Richardson, qui l a introduit au début du XXe siècle. Ce procédé est notamment… …   Wikipédia en Français

  • Extrapolation de Richardson — En analyse numérique, le procédé d extrapolation de Richardson est une technique d accélération de la convergence. Il est ainsi dénommé en l honneur de Lewis Fry Richardson[1],[2], qui l a introduit au début du XXe siècle. Ce procédé est… …   Wikipédia en Français

  • Richardson — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sommaire 1 Patronyme 2 Toponyme 3 …   Wikipédia en Français

  • Romberg-Extrapolation — Die Romberg Integration ist ein Verfahren zur numerischen Bestimmung von Integralen und wurde von Werner Romberg entwickelt. Sie ist eine Verbesserung der (Sehnen) Trapezregel durch Extrapolation. Inhaltsverzeichnis 1 Grundgedanke 2… …   Deutsch Wikipedia

  • Lewis Fry Richardson — (* 11. Oktober 1881 in Newcastle upon Tyne; † 30. September 1953 in Kilmun, Argyll) war ein britischer Meteorologe und Friedensforscher. Er berechnete die erste Wettervorhersage, und auch wen …   Deutsch Wikipedia

  • Lewis Fry Richardson — Infobox Scientist name = Lewis Fry Richardson box width = image width = caption = Lewis Fry Richardson D.Sc., FRS birth date = birth date|1881|10|11|df=y birth place = Newcastle upon Tyne death date = death date and age|1953|9|30|1881|10|11|df=y… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”