Ricci-flat manifold

Ricci-flat manifold

In mathematics, Ricci-flat manifolds are Riemannian manifolds whose Ricci curvature vanishes. In physics, they represent vacuum solutions to the analogues of Einstein's equations for Riemannian manifolds of any dimension, with vanishing cosmological constant. Ricci-flat manifolds are special cases of Einstein manifolds, where the cosmological constant need not vanish.

Ricci-flat manifolds, in general, have restricted holonomy groups. Important cases include Calabi-Yau manifolds and hyperkähler manifolds.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Flat manifold — In mathematics, a Riemannian manifold is said to be flat if its curvature is everywhere zero. Intuitively, a flat manifold is one that locally looks like Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add …   Wikipedia

  • Ricci curvature — In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci Curbastro, provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n… …   Wikipedia

  • Ricci flow — In differential geometry, the Ricci flow is an intrinsic geometric flow a process which deforms the metric of a Riemannian manifold in this case in a manner formally analogous to the diffusion of heat, thereby smoothing out irregularities in the… …   Wikipedia

  • Ricci decomposition — In semi Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a pseudo Riemannian manifold into pieces with useful individual algebraic properties. This decomposition is of fundamental importance in… …   Wikipedia

  • Einstein manifold — In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo Riemannian manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to… …   Wikipedia

  • Calabi–Yau manifold — In mathematics, Calabi ndash;Yau manifolds are compact Kähler manifolds whose canonical bundle is trivial. They were named Calabi ndash;Yau spaces by physicists in 1985, [cite journal | author = Candelas, Horowitz, Strominger and Witten | year =… …   Wikipedia

  • Complex manifold — In differential geometry, a complex manifold is a manifold with an atlas of charts to the open unit disk[1] in Cn, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense… …   Wikipedia

  • Hyperkähler manifold — In differential geometry, a hyperkähler manifold is a Riemannian manifold of dimension 4 k and holonomy group contained in Sp( k ) (here Sp( k ) denotes a compact form of a symplectic group, identifiedwith the group of quaternionic linear unitary …   Wikipedia

  • Sasakian manifold — In differential geometry, a Sasakian manifold is a contact manifold (M, heta) equipped with a special kind of Riemannian metric g, called a Sasakian metric.DefinitionA Sasakian metric is defined using the construction of the Riemannian cone .… …   Wikipedia

  • G2 manifold — A G 2 manifold is a seven dimensional Riemannian manifold with holonomy group G 2. The group G 2 is one of the five exceptional simple Lie groups. It can be described as the automorphism group of the octonions, or equivalently, as a proper… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”