Urelement

Urelement

In set theory, a branch of mathematics, an urelement or ur-element (from the German prefix "ur-", 'primordial') is an object (concrete or abstract) which is not a set, but that may be an element of a set. Urelements are sometimes called "atoms" or "individuals."

Theory

If "U" is an urelement, it makes no sense to say:X in U,although:U in X,is perfectly legitimate.

This should not be confused with the empty set where saying:X in emptysetis well-formed but false.

This view of urelements is based on a two-sorted set theory, i.e., one having a domain containing two sorts of entities, namley sets and urelements. Alternatively, one may regard urelements as distinct empty sets in a one-sorted theory. In this case, the axiom of extensionality must be formulated and invoked with care.

Urelements in set theory

The Zermelo set theory of 1908 included urelements. Subsequent research revealed that in the context of this and closely related axiomatic set theories, the urelements were of little mathematical value. Thus standard expositions of the canonical axiomatic set theories ZF and ZFC do not mention urelements. (For an exception, see Suppes 1960.) Axiomatizations of set theory that do invoke urelements include Kripke-Platek set theory with urelements, and the variant of Von Neumann–Bernays–Gödel set theory described in Mendelson (1997: 297-304). In type theory, an object of type 0 can be called an urelement; hence the name "atom."

Adding urelements to the system New Foundations (NF) to produce NFU has surprising consequences. In particular, Jensen (1969) proved the consistency of NFU relative to Peano arithmetic; meanwhile, the consistency of NF relative to anything remains an open problem. Moreover, NFU remains relatively consistent when augmented with an axiom of infinity and the axiom of choice. Meanwhile, the negation of the axiom of choice is, curiously, an NF theorem. Holmes (1998) takes these facts as evidence that NFU is a more successful foundation for mathematics than NF. Holmes further argues that set theory is more natural with than without urelements, since we may take as urelements the objects of any theory or of the physical universe.Holmes, Randall, 1998. " [http://math.boisestate.edu/~holmes/holmes/head.pdf Elementary Set Theory with a Universal Set] ". Academia-Bruylant. The publisher has graciously consented to permit diffusion of this introduction to NFU via the web. Copyright is reserved.]

Notes

References

*Ronald Jensen (1969) "On the Consistency of a Slight(?) Modification of Quine's NF," "Synthese 19": 250-63.
*Mendelson, Elliot (1997) "Introduction to Mathematical Logic, 4th ed". London: Chapman & Hall.
*Patrick Suppes (1960) "Axiomatic Set Theory". Van Nostrand. Dover reprint, 1972.

External links

*MathWorld|title=Urelement|urlname=Urelement


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Urelement — Urelemente sind in der Mengenlehre Elemente, die selbst keine Elemente enthalten.[1][2] Sie bilden also einen echten Teilbereich der Elemente. Urelemente sind von Individuen zu unterscheiden, da letztere heute in der Mathematik meist mit… …   Deutsch Wikipedia

  • urelement — noun A mathematical object which is not a set but which can be an element of a set …   Wiktionary

  • Zermelo-Fraenkel-Mengenlehre — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… …   Deutsch Wikipedia

  • Scott–Potter set theory — An approach to the foundations of mathematics that is of relatively recent origin, Scott–Potter set theory is a collection of nested axiomatic set theories set out by the philosopher Michael Potter, building on earlier work by the mathematician… …   Wikipedia

  • Zermelo Fraenkel — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… …   Deutsch Wikipedia

  • Ur-element — En théorie des ensembles, un ur element (ou urelement) est quelque chose qui n est pas un ensemble mais qui peut être élément d un ensemble. Ainsi, si u est un ur element, et X un ensemble, on peut avoir ou non : u ∈ X, mais X ∈ u est… …   Wikipédia en Français

  • Ur-élément — Ur element En théorie des ensembles, un ur element (ou urelement) est quelque chose qui n est pas un ensemble mais qui peut être élément d un ensemble. Ainsi, si u est un ur element, et X un ensemble, on peut avoir ou non : u ∈ X, mais X ∈ u …   Wikipédia en Français

  • Willard Van Orman Quine — Unreferenced|date=August 2007 Infobox Philosopher region = Western Philosophy era = 20th century philosophy color = #B0C4DE image caption = Willard Van Orman Quine name = Willard Van Orman Quine birth = birth date|mf=yes|1908|6|25 death = death… …   Wikipedia

  • Type theory — In mathematics, logic and computer science, type theory is any of several formal systems that can serve as alternatives to naive set theory, or the study of such formalisms in general. In programming language theory, a branch of computer science …   Wikipedia

  • Kripke–Platek set theory with urelements — The Kripke–Platek set theory with urelements (KPU) is an axiom system for set theory with urelements that is considerably weaker than the familiar system ZF. PreliminariesThe usual way of stating the axioms presumes a two sorted first order… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”