Regular space

Regular space

In topology and related fields of mathematics, regular spaces and T3 spaces are particularly convenient kinds of topological spaces.Both conditions are examples of separation axioms.

Definitions

Suppose that "X" is a topological space.

"X" is a "regular space" if and only if, given any closed set "F" and any point "x" that does not belong to "F", there exists a neighbourhood "U" of "x" and a neighbourhood "V" of "F" that are disjoint.In fancier terms, this condition says that "x" and "F" can be separated by neighbourhoods.

"X" is a "T3 space" or "regular Hausdorff space" if and only if it is both regular and Hausdorff.

Note that some mathematical literature uses different definitions for the terms "regular" and "T3".The definitions that we have given here are the ones usually used today; however, some authors switch the meanings of the two terms, or use both terms synonymously for only one condition.In this encyclopedia, we will use the term "regular" freely, but we will usually say "regular Hausdorff" instead of the less clear "T3".In other literature, one should take care to find out which definitions the author is using.(The phrase "regular Hausdorff", however, is unambiguous.)For more on this issue, see History of the separation axioms.

Relationships to other separation axioms

A regular space is necessarily also preregular.Since a Hausdorff space is the same as a preregular T0 space, a regular space that is also T0 must be Hausdorff (and thus T3).In fact, a regular Hausdorff space satisfies the slightly stronger condition T.(However, such a space need not be completely Hausdorff.)Thus, the definition of T3 may cite T0, T1, or T instead of T2 (Hausdorffness); all are equivalent in the context of regular spaces.

Speaking more theoretically, the conditions of regularity and T3-ness are related by Kolmogorov quotients.A space is regular if and only if its Kolmogorov quotient is T3; and, as mentioned, a space is T3 if and only if it's both regular and T0.Thus a regular space encountered in practice can usually be assumed to be T3, by replacing the space with its Kolmogorov quotient.

There are many results for topological spaces that hold for both regular and Hausdorff spaces.Most of the time, these results hold for all preregular spaces; they were listed for regular and Hausdorff spaces separately because the idea of preregular spaces came later.On the other hand, those results that are truly about regularity generally don't also apply to nonregular Hausdorff spaces.

There are many situations where another condition of topological spaces (such as normality, paracompactness, or local compactness) will imply regularity if some weaker separation axiom, such as preregularity, is satisfied.Such conditions often come in two versions: a regular version and a Hausdorff version.Although Hausdorff spaces aren't generally regular, a Hausdorff space that is also (say) locally compact will be regular, because any Hausdorff space is preregular.Thus from a certain point of view, regularity is not really the issue here, and we could impose a weaker condition instead to get the same result.However, definitions are usually still phrased in terms of regularity, since this condition is more well known than any weaker one.

Most topological spaces studied in mathematical analysis are regular; in fact, they are usually completely regular, which is a stronger condition.Regular spaces should also be contrasted with normal spaces.

Examples and nonexamples

As described above, any completely regular space is regular, and any T0 space that is not Hausdorff (and hence not preregular) cannot be regular.Most examples of regular and nonregular spaces studied in mathematics may be found in those two articles.On the other hand, spaces that are regular but not completely regular, or preregular but not regular, are usually constructed only to provide counterexamples to conjectures, showing the boundaries of possible theorems.Of course, one can easily find regular spaces that are not T0, and thus not Hausdorff, such as an indiscrete space, but these examples provide more insight on the T0 axiom than on regularity. An example of a regular space that is not completely regular is the Tychonoff corkscrew.

Thus, regular spaces are generally not studied because interesting spaces in mathematics are regular without also satisfying some stronger condition.Instead, they are studied to find properties and theorems, such as the ones below, that are actually applied to completely regular spaces, typically in analysis.

There exists Hausdorff spaces that are not regular. An example is the set R with the topology generated by sets of the form "U - C", where "U" is an open set in the usual sense, and "C" is any countable subset of "U".

Elementary properties

Suppose that "X" is a regular space.Then, given any point "x" and neighbourhood "G" of "x", there is a closed neighbourhood "E" of "x" that is a subset of "G".In fancier terms, the closed neighbourhoods of "x" form a local base at "x".In fact, this property characterises regular spaces; if the closed neighbourhoods of each point in a topological space form a local base at that point, then the space must be regular.

Taking the interiors of these closed neighbourhoods, we see that the regular open sets form a base for the open sets of the regular space "X".This property is actually weaker than regularity; a topological space whose regular open sets form a base is "semiregular".


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • regular space — noun A Hausdorff space with the additional property that for every closed set of that space and every point disjoint from that set, there are a disjoint pair of open sets which contain the closed set and the point, respectively …   Wiktionary

  • Locally regular space — In mathematics, particularly topology, a topological space X is locally regular if intuitively it looks locally like a regular space. More precisely, a locally regular space satisfies the property that each point of the space belongs to a subset… …   Wikipedia

  • completely regular space — Math. a topological space in which, for every point and a closed set not containing the point, there is a continuous function that has value 0 at the given point and value 1 at each point in the closed set. * * * …   Universalium

  • completely regular space — Math. a topological space in which, for every point and a closed set not containing the point, there is a continuous function that has value 0 at the given point and value 1 at each point in the closed set …   Useful english dictionary

  • space — 1. noun /speɪs/ a) The intervening contents of a volume. If it be only a Single Letter or two that drops, he thruſts the end of his Bodkin between every Letter of that Word, till he comes to a Space: and then perhaps by forcing thoſe Letters… …   Wiktionary

  • Regular — The term regular can mean normal or obeying rules. Regular may refer to:In organizations: * Regular Army for usage in the U.S. Army * Regular clergy, members of a religious order subject to a rule of life * Regular Force for usage in the Canadian …   Wikipedia

  • Regular conditional probability — is a concept that has developed to overcome certain difficulties in formally defining conditional probabilities for continuous probability distributions. It is defined as an alternative probability measure conditioned on a particular value of a… …   Wikipedia

  • Space burial — is a burial procedure in which a small sample of the cremated ashes of the deceased are placed in a capsule the size of a tube of lipstick and are launched into space using a rocket. As of 2004, samples of about 150 people have been buried in… …   Wikipedia

  • space station — space station, adj. an orbiting manned structure that can be used for a variety of purposes, as to assemble or service satellites, refuel spacecraft, etc. Also called space platform. [1940 45] * * * Manned artificial structure designed to revolve …   Universalium

  • Space Museum (comics) — Space Museum was a Science Fiction Comic Strip published by DC Comics in the early 1960s. The series was written by Gardner Fox and was generally drawn by Carmine Infantio. Sometimes other artists would help out with the drawing. DC Comics… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”