# Electrostatic deflection

Electrostatic deflection

Electrostatic deflection refers to a technique for modifying the path of a stream of charged particles by the use of an electric field applied transverse to the path of the particles.

The Lorentz force acts on any charged particle in an electromagnetic field. Electrostatic deflection uses a special, simplified case of this general effect by limiting the field to an electric field. An electric field applies a force on a particle that is proportional to the strength of the field and to the charge on the particle. The direction of the applied force is the same as the direction of the electric field. For electrostatic deflection, the applied electric field is arranged so that it lies in the plane perpendicular to the initial direction of the stream. The particles are accelerated by this force in proportion to the charge of the particles. The path the particles follow depends on their sideways acceleration and their velocity when they enter the deflecting field. Therefore it is important for good control of the direction that the particles in the stream have a uniform charge to mass ratio and that they move at a uniform speed. The technique is called electro"static" because the strength and direction of the applied field changes slowly relative to the time it takes for the particles to transit the field, and thus can be considered not to change (be static) for any particular particle.

The most common use for this technique is controlling the path of a stream of electrons in a vacuum. One application is in small cathode ray tubes for oscilloscopes. In these tubes the electric field is created by two sets of paired electrodes, mounted at right angles, that the electron stream flows between. This arrangement allows independent deflection of the beam in two dimensions (usually perceived as up/down (vertical) and right/left (horizontal)). The electrodes are commonly called "deflection plates". Traditionally, the electrons pass through the vertical deflection plates first, yielding slightly higher sensitivity because of the longer travel time from the vertical deflection plates to the phosphor screen as compared to the horizontal deflection plates. In very high speed oscilloscopes, the deflection plates were often complex structures, combining a series of sub-plates with an electrical delay line. By matching the propagation speed of the electrical signal with the transit speed of the electrons, maximum bandwidth (frequency response) was achieved.

The technique works well whenever a sufficiently uniform stream can be created, as discussed above. Therefore, it has been used in controlling macroscopic particle streams in areas such as flow cytometry as well.

Electrostatic deflection is very useful for small deflection angles but is well know to be inferior to magnetic deflection for deflecting a charged particle beam into large angles - say over 10 degrees. The reason is that deflection aberrations become large as the deflection angle increases. This reduces the ability to finely focus the beam. Also in electrostatic deflection it has long been the practice to inject the beam midway between the charged deflection plates so as to avoid the fringe fields as much as possible. However it was found by computation methods that deflection aberrations would be significantly reduced if the beam were injected offset toward the attracting plate. That way the beam tends to follow equipotentials and the deflection force is normal to the beam direction. Thus offset, all the electrons in the beam are deflected into the same angle. There is an induced astigmatism that is correctable. This deflection idea has been tested and verified. Deflection angles of 50 degrees are reportedly possible without measurable deflection aberration. Optimal injection offset is approximately 1/3 of the plate gap toward the deflecting plate. The useful beam diameter is also approximately 1/3 of the gap. See M. Retsky and R. Stein. Testing an electron beam deflection innovation: Initial results. Jour. Vacuum Science and Tech. B 20(6): 2678-2681 Nov/Dec 2002. Also see US patents 6614151, 6232709, and 5825123.

* Electricity
* Static electricity

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Electrostatic deflection (molecular physics/nanotechnology) — In molecular physics/nanotechnology, electrostatic deflection is the deformation of a beam like structure/element bent by an electric field. It can be due to interaction between electrostatic fields and net charge or electric polarization effects …   Wikipedia

• Electrostatic deflection (structural element) — In molecular physics/nanotechnology, electrostatic deflection is the deformation of a beam like structure/element bent by an electric field (Fig. 1). It can be due to interaction between electrostatic fields and net charge or electric… …   Wikipedia

• electrostatic deflection focusing — elektrostatinis fokusavimas statusas T sritis fizika atitikmenys: angl. electrostatic deflection focusing; electrostatic focusing vok. elektrostatische Fokussierung, f rus. электростатическая фокусировка, f pranc. focalisation électrostatique, f …   Fizikos terminų žodynas

• Deflection — or deflexion may refer to: Deflection (engineering), the displacement of a structural element under load Deflection (military), a technique of shooting ahead of a moving target so that the target and projectile will collide Deflection (physics),… …   Wikipedia

• electrostatic focusing — elektrostatinis fokusavimas statusas T sritis fizika atitikmenys: angl. electrostatic deflection focusing; electrostatic focusing vok. elektrostatische Fokussierung, f rus. электростатическая фокусировка, f pranc. focalisation électrostatique, f …   Fizikos terminų žodynas

• Oscilloscope types — This is a subdivision of the Oscilloscope article, discussing the various types and models of oscilloscopes in greater detail. Contents 1 Cathode ray oscilloscope (CRO) 1.1 Dual beam oscilloscope 2 Analog storage oscilloscope …   Wikipedia

• Cathode ray tube — Cutaway rendering of a color CRT: 1. Three Electron guns (for red, green, and blue phosphor dots) 2. Electron beams 3. Focusing coils 4. Deflection coils 5. Anode connection 6. Mask for separating beams for red,… …   Wikipedia

• Electron beam lithography — (often abbreviated as e beam lithography) is the practice of scanning a beam of electrons in a patterned fashion across a surface covered with a film (called the resist),cite book |last= McCord |first=M. A. |coauthors=M. J. Rooks |title=… …   Wikipedia

• Inkjet printer — Inkjet printers operate by propelling variably sized droplets of liquid or molten material (ink) onto almost any sized page. They are the most common type of computer printer for the general consumerFact|date=November 2007 due to their low cost,… …   Wikipedia