Reversible jump

Reversible jump

Reversible jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology that allows simulation of the posterior distribution on spaces of varying dimensions. [cite journal
author = Green, P.J. |authorlink=Peter Green (statistician)
year = 1995
title = Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
journal = Biometrika
volume = 82
issue = 4
pages = 711–732
url = http://links.jstor.org/sici?sici=0006-3444(199512)82%3A4%3C711%3ARJMCMC%3E2.0.CO%3B2-F
month = 12
doi = 10.1093/biomet/82.4.711
] Thus, the simulation is possible even if the number of parameters in the model is not known.

Let :n_min N_m={1,2,ldots,I} be a model indicator and M=igcup_{n_m=1}^I R^{d_m} the parameter space whose number of dimensions d_m depends on the model n_m. The model indication need not be finite. The stationary distribution is the joint posterior distribution of (M,N_m) that takes the values (m,n_m).

The proposal m' can be constructed with a mappingg_{1mm'} of m and u, where u is drawn from a random componentU with density q on R^{d_{mm'. The move to state (m',n_m') can thus be formulated as

: (m',n_m')=(n_m',g_{1mm'}(m,u))

The function

: g_{mm'}:=Bigg((m,u)mapsto igg((m',u')=ig(g_{1mm'}(m,u),g_{2mm'}(m,u)ig)igg)Bigg)

must be "one to one", differentiable, and have a non-zero support

: sup(gmm') e varnothing

so that there exists an inverse function

:g^{-1}_{mm'}=g_{m'm}

that is differentiable. Therefore, the (m,u) and (m',u') must be of equal dimension, which is the case if the dimension criterion

:d_m+d_{mm'}=d_{m'}+d_{m'm}

is met where d_{mm'} is the dimension of u. This is known as "dimension matching".

If R^{d_m}subset R^{d_{m' then the dimensional matchingcondition can be reduced to

:d_m+d_{mm'}=d_{m'}

with

:(m,u)=g_{m'm}(m).

The acceptance probability will be given by

: a(m,m')=minleft(1, frac{p_{m'm}p_{m'}f_{m'}(m')}{p_{mm'}q_{mm'}(m,u)p_{m}f_m(m)}left|detleft(frac{partial g_{mm'}(m,u)}{partial (m,u)} ight) ight| ight),where |cdot | denotes the absolute value and p_mf_m is the joint posterior probability

: p_mf_m=c^{-1}p(y|m,n_m)p(m|n_m)p(n_m),where c is the normalising constant.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Markov chain Monte Carlo — MCMC redirects here. For the organization, see Malaysian Communications and Multimedia Commission. Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo methods) are a class of algorithms for sampling from probability… …   Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • List of statistics topics — Please add any Wikipedia articles related to statistics that are not already on this list.The Related changes link in the margin of this page (below search) leads to a list of the most recent changes to the articles listed below. To see the most… …   Wikipedia

  • Peter Green (statistician) — Peter Green FRS is a British Bayesian statistician. He holds a chair in Statistics at Bristol University. He is distinguished for his contributions to computational statistics, in particular his contributions to spatial statistics and semi… …   Wikipedia

  • Bayesian additive regression kernels — (BARK) is a non parametric statistics model for regression and classificationcite web| title= Bayesian Additive Regression Kernels |url= http://stat.duke.edu/people/theses/OuyangZ.html |Author = Zhi Ouyang |Publisher = Duke University] . The… …   Wikipedia

  • Korbinian Strimmer — (* 1972) ist ein deutscher Statistiker. Inhaltsverzeichnis 1 Leben 2 Wirken 3 Auszeichnungen 4 Schriften (Auswahl) …   Deutsch Wikipedia

  • Strimmer — Korbinian Strimmer (* 1972) ist Statistiker. Inhaltsverzeichnis 1 Leben 2 Wirken 3 Auszeichnungen 4 Schriften (Auswahl) 5 Wissenschaftliche Software (Auswahl) …   Deutsch Wikipedia

  • Weißer Zwerg — Hertzsprung Russell Diagramm Spektralklasse Braune Zwerge …   Deutsch Wikipedia

  • Centro de Neurociencias de Cuba — Saltar a navegación, búsqueda El Centro de Neurociencias de Cuba (CNEURO) está ubicado en Playa, provincia de Ciudad de La Habana. Surgió en 1969 como uno de los primeros grupos en el mundo en emplear la computación para el análisis de la… …   Wikipedia Español

  • Cuban Neurosciences Center — The Cuban Neurosciencies Center (CNEURO) is located in Playa, Ciudad de la Habana province. It was founded in 1969 as one of the first groups in the world to use informatics for the analysis of the brain s electrical activity. The Cuban… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”