Kane quantum computer

Kane quantum computer

The Kane quantum computer is a proposal for a scalable quantum computer proposed by Bruce Kane in 1998 [B.E. Kane, "A silicon-based nuclear spin quantum computer", "Nature", May 1998, 393, p1331] , then at the University of New South Wales. Often thought of as a hybrid between quantum dot and NMR quantum computers, the Kane computer is based on an array of individual phosphorus donor atoms embedded in a pure silicon lattice. Both the nuclear spins of the donors and the spins of the donor electrons participate in the computation.

The original proposal calls for phosphorus donors to be placed in an array with a spacing of 20 nm, approximately 20 nm below the surface. An insulating oxide layer is grown on top of the silicon. Metal A gates are deposited on the oxide above each donor, and J gates between adjacent donors.

The phosphorus donors are isotopically pure 31P, which have a nuclear spin of 1/2. The silicon substrate is isotopically pure 28Si which has nuclear spin 0. Using the nuclear spin of the P donors as a method to encode qubits has two major advantages. Firstly, the state has an extremely long decoherence time, perhaps on the order of 1018 seconds at millikelvin temperatures. Secondly, the qubits may be manipulated by applying an oscillating magnetic field, as in typical NMR proposals. By altering the voltage on the A gates, it should be possible to alter the Larmor frequency of individual donors. This allows them to be addressed individually, by bringing specific donors into resonance with the applied oscillating magnetic field.

Nuclear spins alone will not interact significantly with other nuclear spins 20 nm away. Nuclear spin is useful to perform single-qubit operations, but to make a quantum computer, two-qubit operations are also required. This is the role of electron spin in this design. Under A-gate control, the spin is transferred from the nucleus to the donor electron. Then, a potential is applied to the J gate, drawing adjacent donor electrons into a common region, greatly enhancing the interaction between the neighbouring spins. By controlling the J gate voltage, two-qubit operations are possible.

Kane's proposal for readout was to apply an electric field to encourage spin-dependent tunneling of an electron to transform two neutral donors to a D+–D– state, that is, one where two electrons orbit the same donor. The charge excess is then detected using a single-electron transistor. This method has two major difficulties. Firstly, the D– state has strong coupling with the environment and hence a short decoherence time. Secondly and perhaps more importantly, it's not clear that the D– state has a sufficiently long lifetime to allow for readout—the electron tunnels into the conduction band.

Unlike many quantum computation schemes, the Kane quantum computer is in principle scalable to an arbitrary number of qubits. This is possible because qubits may be individually addressed by electrical means.

Since Kane's proposal, under the guidance of Robert Clark, pursuing realisation of the Kane quantum computer has become the primary quantum computing effort in Australia. [ [http://www.qcaustralia.org/ Centre for Quantum Computer Technology] ] [ [http://www.phys.unsw.edu.au Dept of Physics] , UNSW] Currently, about 100 researchers work on the problem. Theorists have put forward a number of proposals for improved readout. Experimentally, atomic-precision deposition of phosphorus atoms has been demonstrated, using an STM technique. Detection of the movement of single electrons between small, dense clusters of phosphorus donors has also been achieved. The group remains optimistic that a practical large-scale quantum computer can be built.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Quantum computer — A quantum computer is a device for computation that makes direct use of distinctively quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. In a classical (or conventional) computer, information is… …   Wikipedia

  • One-way quantum computer — The one way or measurement based quantum computer is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is one way because the… …   Wikipedia

  • Nuclear magnetic resonance quantum computer — Molecule of alanine used in NMR implementation of quantum computing. Qubits are implemented by spin states of the black carbon atoms NMR quantum computing uses the spin states of molecules as qubits. NMR differs from other implementation …   Wikipedia

  • Quantum finite automata — In quantum computing, quantum finite automata or QFA are a quantum analog of probabilistic automata. They are related to quantum computers in a similar fashion as finite automata are related to Turing machines. Several types of automata may be… …   Wikipedia

  • Quantum information — For the journal with this title, see Historical Social Research. In quantum mechanics, quantum information is physical information that is held in the state of a quantum system. The most popular unit of quantum information is the qubit, a two… …   Wikipedia

  • Quantum channel — In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information… …   Wikipedia

  • List of mathematical topics in quantum theory — This is a list of mathematical topics in quantum theory, by Wikipedia page. See also list of functional analysis topics, list of Lie group topics, list of quantum mechanical systems with analytical solutions. Contents 1 Mathematical formulation… …   Wikipedia

  • Robert Clark — may refer to: Robert Clark (actor) (born 1987), American born Canadian television actor Robert Clark (American football) (born 1965), American football player Robert Clark (Australian politician) (born 1957), member of the Victorian Legislative… …   Wikipedia

  • Deutsch–Jozsa algorithm — The Deutsch–Jozsa algorithm is a quantum algorithm, proposed by David Deutsch and Richard Jozsa in 1992[1] with improvements by Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca in 1998.[2] Although it is of little practical use …   Wikipedia

  • One-Shot Entanglement-Enhanced Classical Communication — In the theory of quantum communication, it is well known that entanglement cannot increase the capacity of a classical communication channel in the sense of Shannon, that is, for an i.i.d. (independent and identically distributed) protocol.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”