SHELAH, SAHARON — (1945– ), Israeli mathematician. Born in Jerusalem, Shelah received his Ph.D. in mathematics from the Hebrew University of Jerusalem (1969). He was simultaneously professor of mathematics at the Hebrew University and Rutgers University, New… … Encyclopedia of Judaism
Hyper-Woodin cardinal — In axiomatic set theory, a hyper Woodin cardinal is a kind of large cardinal. A cardinal κ is called hyper Woodin if and only if there exists a normal measure U on κ such that for every set S , the set :{λ < κ | λ is … Wikipedia
Saharon Shelah — Infobox Scientist name = Saharon Shelah image width = 300px caption = Professor Saharon Shelah in Jerusalem, March 2008 birth date = Birth date and age|1945|7|3 birth place = Jerusalem residence = Jerusalem, Israel nationality = ISR ethnicity =… … Wikipedia
Reflecting cardinal — In set theory, a mathematical discipline, a reflecting cardinal is a cardinal number kappa; for which there is a normal ideal I on kappa; such that for every X isin; I +, the set of α isin; kappa; for which X reflects at α is in I +. (A… … Wikipedia
Grand cardinal — En mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l axiomatique usuelle (ZFC) tels que aleph zéro,… … Wikipédia en Français
Saharon Shelah — Saltar a navegación, búsqueda Saharon Shelah Profesor Saharon Shelah en Jerusalem, Marzo 2008 Nacimiento … Wikipedia Español
Saharon Shelah — (hebräisch שהרן שלח; * 3. Juli 1945 in Jerusalem) ist ein israelischer Mathematiker. Er ist Professor an der Hebräischen Universität in Jerusalem sowie an der Rutgers University in New Jersey, USA. Shelah arbeitet auf dem Gebiet der… … Deutsch Wikipedia
Large cardinal property — In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very large (for example, bigger than aleph zero … Wikipedia
List of large cardinal properties — This page is a list of some types of cardinals; it is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the… … Wikipedia
Woodin cardinal — In set theory, a Woodin cardinal (named for W. Hugh Woodin) is a cardinal number λ such that for all : f : λ rarr; λthere exists:κ < λ with { f (β)|β … Wikipedia