Maximal arc

Maximal arc

Maximal arcs are (k,d)-arcs in a projective plane, where k is maximal with respect to the parameter d and the ambient space.

Definition

Let π be a projective plane of order q (not necessarily desarguesian). Maximal arcs of degree d (d\geq 1)are (k,d)-arcs in π, where k is maximal with respect to the parameter d or thus k = qd + dq.

Equivalently, one can define maximal arcs of degree d in π as a set of points K(\neq \emptyset) such that every line intersect it either in 0 or d points.

Properties

  • d = q + 1 occurs if and only if every point is in K.
  • The number of lines through a fixed point p, not on K (provided that d\neq (q+1)) , intersecting K in one point, equals (q+1)-\frac{q}{d}. Thus if d\leq q , d divides q
  • d = 1 occurs if and only if K contains exactly one point.
  • d = q occurs if and only if K contains all points except the points on a fixed line.
  • In PG(2,q) with q odd, no maximal arcs of degree d with 1 < d < q exist.
  • In PG(2,2h), maximal arcs for every degree 2^t,1\leq t\leq h exist.

Partial geometries

One can construct partial geometries, derived from maximal arcs

  • Let K be a maximal arc with degree 1<d\leq q. Consider the incidence structure S(K) = (P,B,I), where P contains all points of the projective plane not on K, B contains all line of the projective plane intersecting K in d points, and the incidence I is the natural inclusion. This is a partial geometry : pg(q-d,q-\frac{q}{d},q-\frac{q}{d}-d+1).
  • Consider the space PG(3,2^h) (h\geq 1) and let K a maximal arc of degree d=2^s (1\leq s\leq m) in a two-dimensional subspace π. Consider an incidence structure T_2^{*}(K)=(P,B,I) where P contains all the points not in π, B contains all lines not in π and intersecting π in a point in K, and I is again the natural inclusion. T_2^{*}(K) is again a partial geometry : pg(2h − 1,(2h + 1)(2m − 1),2m − 1).

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Arc (projective geometry) — Let pi be a finite projective plane (not necessarily Desarguesian) of order q . A (k,d) arc A (kgeq 1,dgeq 1) is a set of k points of pi such that each line intersects A in at most d points, and there is at least one line that does intersect A in …   Wikipedia

  • Arc (Rivière) — Pour les articles homonymes, voir Arc. l Arc C …   Wikipédia en Français

  • Maximal independent set — This article is about the combinatorial aspects of maximal independent sets of vertices in a graph. For other aspects of independent vertex sets in graph theory, see Independent set (graph theory). For other kinds of independent sets, see… …   Wikipedia

  • Arc (rivière) — 45°33′46″N 6°12′13″E / 45.56278, 6.20361 …   Wikipédia en Français

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Partial geometry — An incidence structure S=(P,B,I) is a (finite) partial geometry if there are integers s,t,alphageq 1 such that:* For each two different points p and q , there is at most one line incident with both of them. * Each line is incident with s+1 points …   Wikipedia

  • ASIE - Géographie physique — L’Asie est le plus vaste des continents: 44 millions de kilomètres carrés. Elle s’étend sur 75 degrés de latitude et, en tenant compte des îles, sur 92 degrés (de la Severnaïa Zemlia, ou Terre du Nord, 810 de latitude nord, à l’île Roti, 110 de… …   Encyclopédie Universelle

  • eye, human — ▪ anatomy Introduction  specialized sense organ capable of receiving visual images, which are then carried to the brain. Anatomy of the visual apparatus Structures auxiliary to the eye The orbit       The eye is protected from mechanical injury… …   Universalium

  • Formule De Steiner-Minkowski — Pour les articles homonymes, voir Steiner et Minkowski. En géométrie, les formules de Steiner Minkowski sont des relations traitant d un compact C d un espace euclidien E. On ajoute en général une condition supplémentaire sur le compact,… …   Wikipédia en Français

  • Formule de Steiner-Minkowski — Pour les articles homonymes, voir Steiner et Minkowski. En géométrie, les formules de Steiner Minkowski sont des relations traitant d un compact C d un espace euclidien E. On ajoute en général une condition supplémentaire sur le compact,… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”