Van Hiele levels

Van Hiele levels

Van Hiele levels are a postulated "series of levels of understanding for a geometry topic ... that students must pass through" when learning it. [ [http://www.uwrf.edu/~ll63/ElEd/Geom/vanhiele/vanhiele.html Van Hiele Levels ] ] In general, these levels are a product of experience rather than age. In other words, a child must have enough experiences (classroom or otherwise) with these geometric ideas to move to a higher level of sophistication.

0. Visualization: children identify prototypes of basic geometrical figures (triangle, circle, square). At this age (or stage), children might balk at calling a thin, wedge-shaped triangle (with sides 1, 20, 20 or sides 20, 20, 39) a "triangle", because it's so different in shape from an equilateral triangle.

1. Analysis: children can discuss the properties of the basic figueres and recognize them by these properties, but might still insist that "a square is not a rectangle."

2. Abstraction: learners recognize relationships between types of shapes. They recognize that all squares are rectangles, but not all rectangles are squares. They can tell whether it is possible or not to have a rectangle that is, for example, also a rhombus. Students need to be comfortably at this level to be well prepared for a high school geometry course (though many students are not).

3. Deduction: learners can construct geometric proofs at a high school level. Learners should be exposed to deduction at a pre-high-school level in the context of level 2 discussions (what properties tell us that all squares are also rectangles before moving to a more formal frameworl of level 3.

4. Rigor: learners understand how geometry proofs and concepts fit together to create the structure we call geometry. This is the level at which most college geometry courses (for math majors) are designed.

The Van Hiele theory originated in 1957 in the doctoral dissertations of Dina van Hiele-Geldof e Pierre van Hiele in the Utrecht University, in the Netherlands.

Further reading

*"The Van Hiele Levels of Geometric Understanding" by Marguerite Mason
*"Young Children's Developing Understanding of Geometric Shapes" by Mary Anne Hannibal

External links

* [http://www.uwrf.edu/~ll63/ElEd/Geom/vanhiele/vanhiele.html Van Hiele levels and learning geometry]

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Teoría de van Hiele — Los cuadrados compuestos en el centro y a la derecha tienen áreas equivalentes. Quitándoles los triángulos el teorema de Pitágoras queda demostrado. La Teoría de van Hiele o Modelo de van Hiele o Niveles van Hiele es una teoría de enseñanza y… …   Wikipedia Español

  • List of mathematics articles (V) — NOTOC Vac Vacuous truth Vague topology Valence of average numbers Valentin Vornicu Validity (statistics) Valuation (algebra) Valuation (logic) Valuation (mathematics) Valuation (measure theory) Valuation of options Valuation ring Valuative… …   Wikipedia

  • Mathematics education — A mathematics lecture at Aalto University School of Science and Technology. Educational Research …   Wikipedia

  • Taxonomie de Bloom — La taxonomie des objectifs éducationnels selon Bloom. La taxonomie de Bloom est un modèle pédagogique proposant une classification des niveaux d acquisition des connaissances[1]. Benjamin Bloom, bien qu il n en soit pas le seul créateur, est… …   Wikipédia en Français

  • Taxonomie de bloom — La taxonomie des objectifs éducationnels selon Bloom. La taxonomie de Bloom est un modèle pédagogique proposant une classification des niveaux d acquisition des connaissances[1]. Benjamin Bloom, bien qu il n en soit …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”