Leo Harrington

Leo Harrington

Infobox academic
name = Leo A. Harrington
box_width =


image_width =
caption =
birth_date =
birth_place =
death_date =
death_place =
residence =
citizenship = USA
nationality =
ethnicity =
field = Mathematics
work_institutions = University of California, Berkeley
alma_mater = MIT
doctoral_advisor = Gerald E. Sacks
doctoral_students =
known_for =
influences =
influenced =
prizes =
religion =
footnotes =

Leo Anthony Harrington is a professor of mathematics at the University of California, Berkeley who works in
recursion theory, model theory, and set theory.

* Harrington and Jeff Paris proved the Paris–Harrington theorem.Citation
first = J.
last = Paris
first2 = L.
last2 = Harrington
contribution = A Mathematical Incompleteness in Peano Arithmetic
editor-first = J.
editor-last = Barwise
year = 1977
title = Handbook of Mathematical Logic
pages = 1133-1142
publisher = North-Holland
]

* Harrington showed that if the Axiom of Determinacy holds for all analytic sets then x# exists for all reals x.citation
author = Harrington, L.
year = 1978
title = Analytic Determinacy and 0#
journal = Journal of Symbolic Logic
volume = 43
issue = 4
pages = 685–693
doi = 10.2307/2273508
url = http://links.jstor.org/sici?sici=0022-4812(197812)43%3A4%3C685%3AADA%3E2.0.CO%3B2-J
]

* Harrington and Saharon Shelah showed that the first order theory of the recursively enumerable Turing degrees is undecidable.citation
author = Harrington, L.; Shelah, S.
year = 1982
title = The undecidability of the recursively enumerable degrees
journal = Bull. Amer. Math. Soc.(NS)
volume = 6
issue = 1
pages = 79–80
doi = 10.1090/S0273-0979-1982-14970-9
url = http://www.projecteuclid.org/handle/euclid.bams/1183548593
]

References

External links

* [http://math.berkeley.edu/~leo/ Home page] .
*MathGenealogy |id=22298


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Leo Harrington — Leo Anthony Harrington (* 17. Mai 1946) ist ein US amerikanischer Mathematiker, der sich mit mathematischer Logik und Mengenlehre beschäftigt. Harrington promovierte 1973 am Massachusetts Institute of Technology bei Gerald E. Sacks (Contributions …   Deutsch Wikipedia

  • Harrington — can refer to:Places in the United Kingdom: *Harrington, Cumbria *Harrington, Lincolnshire *Harrington, NorthamptonshirePlaces in the United States: *Harrington, Delaware *Harrington, Maine *Harrington, Washington *Harrington Park, New… …   Wikipedia

  • Harrington — ist der Name folgender Orte: in Australien: Harrington (New South Wales) in Großbritannien: Harrington (Cumbria) Harrington (Lincolnshire) Harrington (Northamptonshire) in Kanada: Harrington (Kanada) in den Vereinigten Staaten: Harrington… …   Deutsch Wikipedia

  • Leo du Pres and Greenlee Smythe — du Pres are fictional characters and a couple from the American daytime drama All My Children . Leo was portrayed by Josh Duhamel, and Greenlee is portrayed by Rebecca Budig. The couple is often referred to by the portmanteau Greenleo (for… …   Wikipedia

  • Leo II (dwarf galaxy) — Leo II Observation data (J2000 epoch) Constellation Leo Right ascension 11h 13m 29.2s [1] …   Wikipedia

  • Leo I (dwarf galaxy) — Leo I Observation data (J2000 epoch) Constellation Leo Right ascension 10h 08m 27.4s[1] …   Wikipedia

  • Leo I — Pour les articles homonymes, voir Leo. Leo I Leo I, la tache diffuse située à côté de la brillante Regulus …   Wikipédia en Français

  • Leo II — Pour les articles homonymes, voir Leo. Leo II Données d’observation Époque J2000.0 Ascension droite 11h 13m …   Wikipédia en Français

  • Leo II — Para otros usos de este término, véase León II (desambiguación). Leo II Datos de observación (Época J2000.0) …   Wikipedia Español

  • Paris–Harrington theorem — In mathematical logic, the Paris–Harrington theorem states that a certain combinatorial principle in Ramsey theory is true, but not provable in Peano arithmetic. This was the first natural example of a true statement about the integers that could …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”