Stark's conjecture

Stark's conjecture

Stark's conjecture (or conjectures) in number theory, introduced in a series of papers in the 1970s by American mathematician Harold Stark, deals partly with the question of finding interesting, particular units in number fields. This has resulted in a large conjectural development for "L"-functions, and is also capable of producing concrete, numerical results, as they are precise enough for computation.

Formulation

Stark's principal conjecture proposes that the first non-zero coefficient of the Taylor expansion of an "L"-function at zero is given by the product of an algebraic number and the so-called Stark regulator. When the extension defining the "L"-function is abelian, various refined conjectures have been proposed (see the paper by Rubin [ [http://www.numdam.org/item?id=AIF_1996__46_1_33_0 Rubin: A Stark conjecture “over ${f Z}$” for abelian $L$-functions with multiple zeros ] ] , for example), which in certain cases predict the existence of special units known as Stark units.

Computation

The first order zero conjectures are used in recent versions of the PARI/GP computer algebra system to compute Hilbert Class fields of totally real number fields, and the conjectures provide one solution to Hilbert's twelfth problem, which challenged mathematicians to show how class fields may be constructed over any number field by the methods of complex analysis.

Stark's principal conjecture has been proven in various special cases, including the case where the character defining the "L"-function takes on only rational values. Except when the base field is the rational numbers or an imaginary quadratic field, the abelian Stark conjectures are still unproved in number fields, and more progress has been made in function fields.

Progress

Work of Manin related Stark's conjectures to noncommutative geometry of Alain Connes. This provides a very attractive conceptual framework for studying the conjectures, although at the moment it is unclear whether Manin's techniques will yield the actual proof.

References

* [http://www.math.umass.edu/~dhayes/lecs.html Homepage of David R. Hayes]
* [http://front.math.ucdavis.edu/math.AG/0202109 Manin's paper]
* [http://www.numdam.org/item?id=AIF_1996__46_1_33_0 Rubin's paper]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Harold Stark — Harold Mead Stark (born 1939) is an American mathematician, specializing in number theory. He is best known for his solution of the Gauss class number 1 problem, in effect correcting and completing the earlier work of Kurt Heegner; and for Stark… …   Wikipedia

  • Theoreme de Stark-Heegner — Théorème de Stark Heegner Le théorème de Stark Heegner est un théorème de la théorie des nombres qui indique précisément quel corps de nombres quadratique imaginaire admet une décomposition en facteurs premiers unique dans leur anneau d entiers.… …   Wikipédia en Français

  • Théorème de Stark-Heegner — Le théorème de Stark Heegner est un théorème de la théorie des nombres qui indique précisément quel corps de nombres quadratique imaginaire admet une décomposition en facteurs premiers unique dans leur anneau d entiers. Il résout un cas… …   Wikipédia en Français

  • Théorème de stark-heegner — Le théorème de Stark Heegner est un théorème de la théorie des nombres qui indique précisément quel corps de nombres quadratique imaginaire admet une décomposition en facteurs premiers unique dans leur anneau d entiers. Il résout un cas… …   Wikipédia en Français

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Hilbert's twelfth problem — Hilbert s twelfth problem, of the 23 Hilbert s problems, is the extension of Kronecker Weber theorem on abelian extensions of the rational numbers, to any base number field. The classical theory of complex multiplication does this for any… …   Wikipedia

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

  • Class number problem — In mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields with class number n. It is named after the great… …   Wikipedia

  • Cristian Dumitru Popescu — Not to be confused with Cristian Eugen Popescu. Cristian D. Popescu Nationality Romanian American Institutions University of California, San Diego …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”