- Brownian motor
Brownian motors are nano-scale or molecular devices by which thermally activated processes (chemical reactions) are controlled and used to generate directed motion in space and to do mechanical or electrical work. These tiny engines operate in an environment where
viscosity dominatesinertia , and wherethermal noise makes moving in a specific direction as difficult as walking in a hurricane: the forces impelling these motors in the desired direction are minuscule in comparison with the random forces exerted by the environment. Because this type of motor is so strongly dependent on random thermal noise, Brownian motors are feasible only at the nanometer scale.In biology, many protein-based
molecular motors in the cell may in fact be Brownian motors. These molecular motors convert the chemical energy present in ATP into mechanical energy. One example of a Brownian motor would be an ATPase motor that hydrolyzes ATP to generate fluctuating anisotropic energetic potentials. The anisotropic potentials along the path would bias the motion of a particle (like an ion or polypeptide); the result would essentially be diffusion of a particle whose net motion is strongly biased in one direction. The translocation of the particle would only be loosely coupled to hydrolysis of ATP.The dynamics and activity of Brownian motors are current topics of study in theoretical and experimental
biophysics . Brownian motors are sometimes modeled using theFokker-Planck equation or withMonte Carlo method s. Many researchers are presently engaged in understanding how molecular-scale motors operate in environments with non-negligible thermal noise. The thermodynamics of such motors is constrained by the ramifications of theFluctuation Theorem s.ee also
*
Brownian ratchet
*Brownian motion
*Fluctuation Theorem
*Robert Brown (botanist) External articles
* R. D. Astumian (1997). [http://www.sciencemag.org/cgi/content/abstract/276/5314/917 "Thermodynamics and kinetics of a Brownian motor"] , Science 276, p. 917-922.
* R. D. Astumian and P. Hänggi (2002) " Brownian Motors ". [http://www.physik.uni-augsburg.de/theo1/hanggi/Papers/309.pdf] , Physics Today 55 (11) , p. 33 - 39.
* P. Hänggi , F. Marchesoni and F. Nori (2005) " Brownian Motors ". [http://www.physik.uni-augsburg.de/theo1/hanggi/History/BrownianmotorsAnnPhys.pdf] , A.. Physik (Leipzig) 14, p. 51 - 70.
* J. A. Freund, T. Pöschel, ed. (2000). "Stochastic processes in physics, chemistry, and biology". Lecture notes in physics, vol. 557. Springer Publishers, Berlin.
*Lukasz Machura: "Performance of Brownian Motors". University of Augsburg, 2006 ( [http://www.opus-bayern.de/uni-augsburg/volltexte/2006/222/ PDF] )
* [http://xstructure.inr.ac.ru/x-bin/theme2.py?arxiv=cond-mat&level=2&index1=57 Brownian motor on arxiv.org ]
* Peter Hanggi, Fabio Marchesoni, "Artificial Brownian motors: Controlling transport on the nanoscale." Review: arXiv:0807.1283 [http://arxiv.org/abs/0807.1283]
Wikimedia Foundation. 2010.