- Exciton
:"This page is about the
quasiparticle . Exciton is also the title of a single by IDM composerSquarepusher ."An exciton is a bound state of an
electron and an imaginary particle called anelectron hole in an insulator orsemiconductor , and such is aCoulomb -correlated "electron-hole pair". It is an elementary excitation, or aquasiparticle of a solid. In current research, the bound electron and hole pairs (excitons) provide a means to transport energy without transporting net charge. [ [http://www.iop.org/EJ/abstract/0031-9120/5/4/003/ W Y Liang 1970 "Phys. Educ." 5 226-228 ] ("Physics Education" is an international journal, provided by the Institute of Physics (IOP), which may require a paid subscription to view.)]A vivid picture of exciton formation is as follows: a
photon enters a semiconductor, exciting an electron from thevalence band into theconduction band . The missing electron in the valence band leaves a hole (of opposite electric charge) behind, to which the electron is attracted by theCoulomb force . The exciton results from the binding of the electron with its hole. As a result, the exciton has slightly less energy than the unbound electron and hole. Thewavefunction of the bound state is hydrogenic (an "exotic atom " state akin to that of ahydrogen atom ). However, the binding energy is much smaller and the size much bigger than a hydrogen atom because of the effects of screening and theeffective mass of the constituents in the material.In a hydrogen atom the core and the electron can have parallel or antiparallel spin, the same is true for the exciton, and also for
positronium , but not for the two electrons in the He atom. Often excitons were given names which look like hydrogen orbital names, but have the wrong numbering forangular momentum , or otherquantum number s.ubtypes
Excitons can be treated in two limiting cases, which depend on the properties of the material in question. In semiconductors, the
dielectric constant is generally large, and as a result, screening tends to reduce the Coulomb interaction between electrons and holes. The result is a Mott-Wannier exciton, which has a radius much larger than the lattice spacing. As a result, the effect of the lattice potential can be incorporated into the effective masses of the electron and hole, and because of the lower masses and the screened Coulomb interaction, the binding energy is usually much less than a hydrogen atom, typically on the order of 0.1 eV. This type of exciton was named forSir Nevill Francis Mott andGregory Wannier .When a material's dielectric constant is very small, the Coulomb interaction between electron and hole become very strong and the excitons tend to be much smaller, of the same order as the unit cell (or on the same molecule as with
fullerene s), so the electron and hole sit on the same cell. This Frenkel exciton, named afterYakov Frenkel , has typical binding energy on the order of 1.0 eV.Alternatively, an exciton may be thought of as an excited state of an atom or
ion , the excitation wandering from one cell of the lattice to another.Often there is more than one band to choose from for the electron and the hole leading to different types of excitons in the same material. Even high lying bands can be used as is seen in
femtosecond two-photon experiments.At surfaces so called "image states" may occur, where the hole is inside the solid and the electron is in the vacuum. These electron hole pairs can only move along the surface.
In single-wall
carbon nanotubes , excitons have both Wannier-Mott and Frenkel character. This is due to the nature of the Coulomb interaction between electrons and holes in one-dimension. The dielectric function of the nanotube itself is large enough to allow for the spatial extent of thewave function to extend over a few to several nanometers along the tube axis, while poor screening in the vacuum or dielectric environment outside of the nanotube allow for significant binding energies of 0.4-1.0 eV.Dynamics
The probability of the hole disappearing (the electron occupying the hole) is limited by the difficulty of losing the excess energy, and as a result excitons can have a relatively long lifetime. (Lifetimes up to several milliseconds have been observed in
copper (I) oxide ) Another limiting factor in the recombination probability is the spatial overlap of the electron and hole wavefunctions (roughly the probability for the electron to run into the hole). This overlap is smaller for lighter electrons and holes and for highly excited hydrogenic states.The whole exciton can move through the solid. With this additional kinetic energy the exciton may lie above the band-gap.
The exciton propagating through molecular crystal is one that is of greatest concern. Several mechanisms have been proposed in the literature. Two are important. The first one is exciton energy dissipated due to interaction with phonon bath. The other one is energy carried away by radiation. Combination of the two has also been studied.
Much like molecular systems that have well defined resonances, excitons can undergo
internal conversions from energetically higher lying states to lower lying states by coupling to vibrational or electronic degrees of freedom. Internal conversions usually take place of a time scale of a few to tens offemtoseconds . Also,intersystem crossings are possible when adequatespin orbit interactions are present in the material, and usually take place on a time scale of a few to hundreds of picoseconds.Features
* Since an exciton is a bound state of an electron and a hole, the overall charge for this quasiparticle is zero. Hence it carries no
electric current .Interaction
With other particles
Excitons are thus the main mechanism for
light emission in semiconductors at lowtemperature s (where "kT" is less than the excitonbinding energy ), replacing the free electron-hole recombination at higher temperatures.The existence of exciton states may be inferred from the absorption of light associated with their excitation. Typically, excitons are observed just below the
band gap .Excitons may also interact with phonons and lattice distortions to form
polaron s. In that case, the excitons are called dressed excitons.With each other
Provided the interaction is attractive, an exciton can bind with other excitons to form a 'biexciton', analogous to a dihydrogen
molecule . If a large density of excitons is created in a material, they can interact with one another to form anelectron-hole liquid , a state observed in k-space indirect semiconductors.Additionally, excitons are integer-spin particles obeying Bose statistics in the low-density limit. In some systems, where the interactions are repulsive, a Bose-Einstein condensed state is predicted to be the ground state, and indeed such condensate has been already observed in recent experiments [http://www.aip.org/pnu/2006/split/800-1.html AIP Update 800] .The inference was obtained by cooling an exciton state below 5
kelvin s and further observing coherent light emission (with interference patterns) from it.Notes
Wikimedia Foundation. 2010.