Artin billiard

Artin billiard

In mathematics and physics, the Artin billiard is a type of a dynamical billiard first studied by Emil Artin in 1924. It describes the geodesic motion of a free particle on the non-compact Riemann surface mathbb{H}/Gamma, where mathbb{H} is the upper half-plane endowed with the Poincare metric and Gamma=PSL(2,mathbb{Z}) is the modular group. It can viewed as the motion on the fundamental domain of the modular group with the sides identified.

The system is notable in that it is an exactly solvable system that is strongly chaotic: it is not only ergodic, but is also strong mixing. As such, it is an example of an Anosov flow. Artin's paper used symbolic dynamics for analysis of the system.

The quantum mechanical version of Artin's billiard is also exactly solvable. The eigenvalue spectrum consists of a bound state and a continuous spectrum above the energy E=1/4. The wave functions are given by Bessel functions.

Exposition

The motion studied is that of a free particle sliding frictionlessly, namely, one having the Hamiltonian

:H(p,q)=frac{1}{2m} p_i p_j g^{ij}(q)

where "m" is the mass of the particle, q^i, i=1,2 are the coordinates on the manifold, p_i are the conjugate momenta:

:p_i=mg_{ij} frac{dq^j}{dt}

and

:ds^2=g_{ij}(q) , dq^i , dq^j

is the metric tensor on the manifold. Because this is the free-particle Hamiltonian, the solution to the Hamilton-Jacobi equations of motion are simply given by the geodesics on the manifold.

In the case of the Artin billiards, the metric is given by the canonical Poincaré metric

:ds^2=frac{dy^2}{y^2}

on the upper half-plane. The non-compact Riemann surface mathcal{H}/Gamma is a symmetric space, and is defined as the quotient of the upper half-plane modulo the action of the elements of PSL(2,mathbb{Z}) acting as Möbius transforms. The set

:U = left{ z in H: left| z ight| > 1,, left| ,mbox{Re}(z) , ight| < frac{1}{2} ight}

is a fundamental domain for this action.

The manifold has, of course, one cusp. This is the same manifold, when taken as the complex manifold, that is the space on which elliptic curves and modular functions are studied.

References

* E. Artin, "Ein mechanisches System mit quasi-ergodischen Bahnen", "Abh. Math. Sem. d. Hamburgischen Universität", 3 (1924) pp170-175.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Emil Artin — Pour les articles homonymes, voir Artin. Emil Artin. Emil Artin (3 mars 1898 à Vienne, 20  …   Wikipédia en Français

  • Dynamical billiards — The Bunimovich stadium is a chaotic dynamical billiard A billiard is a dynamical system in which a particle alternates between motion in a straight line and specular reflections from a boundary. When the particle hits the boundary it reflects… …   Wikipedia

  • List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

  • Symbolic dynamics — In mathematics, symbolic dynamics is the practice of modelling a topological or smooth dynamical system by a discrete space consisting of infinite sequences of abstract symbols, each of which corresponds to a state of the system, with the… …   Wikipedia

  • Ergodic theory — is a branch of mathematics that studies dynamical systems with an invariant measure and related problems. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Billar dinámico — Saltar a navegación, búsqueda El estadio de Bunimovich es un billar dinámico de tipo caótico Un billar dinámico es un sistema dinámico en el cual una partícula alterna entre movimiento rectilíneo y reflexiones especulares en un contorno o… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”