Fibonacci polynomials

Fibonacci polynomials

In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalisation of the Fibonacci numbers.

Definition

These polynomials are defined by a recurrence relation:

:F_n(x)= egin{cases}0, & mbox{if } n = 0\1, & mbox{if } n = 1\x F_{n - 1}(x) + F_{n - 2}(x),& mbox{if } n geq 2end{cases}

Properties

The first few Fibonacci polynomials are:

:F_1(x)=1 ,:F_2(x)=x ,:F_3(x)=x^2+1 ,:F_4(x)=x^3+2x ,:F_5(x)=x^4+3x^2+1 ,:F_6(x)=x^5+4x^3+3x ,

The Fibonacci numbers are recovered by evaluating the polynomials at "x" = 1. The degree of "F""n" is "n"-1. The ordinary generating function for the sequence is

: sum_{m=0}^infty F_n(x) t^n = frac{t}{1-xt-t^2} .

Lucas polynomials

The associated Lucas polynomials "L""n"("x") have a similar relationship to the Lucas numbers. They satisfy the same recurrence relationship, with different starting values:

L_n(x) = egin{cases}2, & mbox{if } n = 0 \x, & mbox{if } n = 1 \x L_{n - 1}(x) + L_{n - 2}(x), & mbox{if } n geq 2end{cases}

The first few Lucas polynomials are:

:L_1(x)=x ,:L_2(x)=x^2+2 ,:L_3(x)=x^3+3x ,:L_4(x)=x^4+4x^2+2 ,:L_5(x)=x^5+5x^3+5x ,:L_6(x)=x^6+6x^4+9x^2 + 2 ,

The Lucas numbers are recovered by evaluating the polynomials at "x" = 1. The degree of "L""n" is "n". The ordinary generating function for the sequence is

: sum_{m=0}^infty L_n(x) t^n = frac{2-xt}{1-xt-t^2} .

References

*
*

External links

*
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Fibonacci number — A tiling with squares whose sides are successive Fibonacci numbers in length …   Wikipedia

  • Fibonacci — Infobox Scientist box width = 300px name = Leonardo of Pisa (Fibonacci) image width = 150px caption = Leonardo of Pisa, Fibonacci birth date = c. 1170 birth place = Pisa, Italy death date = c. 1250 death place = Pisa, Italy residence = Italy… …   Wikipedia

  • Fibonacci Quarterly — La revue Fibonacci Quarterly s intéresse aux suites des nombres de Fibonacci et au domaine des Mathématiques en général. Publiée dès 1963 par The Fibonacci Association (en), ses premiers éditeurs furent Verner Emil Hoggatt, Jr. (en) …   Wikipédia en Français

  • Chebyshev polynomials — Not to be confused with discrete Chebyshev polynomials. In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev,[1] are a sequence of orthogonal polynomials which are related to de Moivre s formula and which can be defined… …   Wikipedia

  • Suite de Fibonacci — La suite de Fibonacci est une suite d entiers très connue. Elle doit son nom à Leonardo Fibonacci, dit Leonardo Pisano, un mathématicien italien du XIIIe siècle qui, dans un problème récréatif posé dans un de ses ouvrages, le Liber Abaci,… …   Wikipédia en Français

  • Generalizations of Fibonacci numbers — In mathematics, the Fibonacci numbers form a sequence defined recursively by:: F (0) = 0: F (1) = 1: F ( n ) = F ( n 1) + F ( n 2), for integer n > 1.That is, after two starting values, each number is the sum of the two preceding numbers.The… …   Wikipedia

  • Padovan polynomials — In mathematics, Padovan polynomials are a generalization of Padovan sequence numbers. These polynomials are defined by::P n(x)=left{egin{matrix}x,qquadqquadqquadqquad mbox{if }n=11,qquadqquadqquadqquad mbox{if }n=2x^2,qquadqquadqquadqquad… …   Wikipedia

  • Padovan sequence — The Padovan sequence is the sequence of integers P ( n ) defined by the initial values :P(0)=P(1)=P(2)=1,and the recurrence relation:P(n)=P(n 2)+P(n 3).The first few values of P ( n ) are:1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65,… …   Wikipedia

  • List of polynomial topics — This is a list of polynomial topics, by Wikipedia page. See also trigonometric polynomial, list of algebraic geometry topics.Basics*Polynomial *Coefficient *Monomial *Polynomial long division *Polynomial factorization *Rational function *Partial… …   Wikipedia

  • Polynomial sequence — In mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial. Examples * Monomials * Rising factorials * Falling …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”